Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

  • J. Sánchez-Marcos
  • E. Céspedes
  • F. Jiménez-Villacorta
  • A. Muñoz-Martín
  • C. Prieto
Research Paper


A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe–Au–Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1–2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.


Core–shell nanoparticles Magnetic nanoparticles Magnetic nanoparticles in transparent films 



This study was supported by Spanish MICINN under contracts MAT2009-08786 and CSD2009-00013 and by regional government of Madrid though contract S2009/MAT-1756. We would like to thank the SpLine CRG beamline staff at ESRF and to the CMAM staff for assistance during XAS and RBS experiments, respectively.


  1. Alonso J, Fdez-Gubieda ML, Barandiaran JM, Svalov A, Fernandez Barquin L, Alba Venero D, Orue I (2010) Crossover from superspin glass to superferromagnet in FexAg100-x nanostructured thin films. (20 ≤ x ≤ 50). Phys Rev B 82:054406. doi: 10.1103/PhysRevB.82.054406 CrossRefGoogle Scholar
  2. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B 58:7565–7576. doi: 10.1103/PhysRevB.58.7565 CrossRefGoogle Scholar
  3. Banthí JC, Meneses-Rodríguez D, García F, González MU, García-Martín A, Cebollada A, Armelles G (2012) High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au–SiO2 magnetoplasmonic nanodisks. Adv Mat 24:OP36–OP41. doi: 10.1002/adma.201103634 CrossRefGoogle Scholar
  4. Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker F, Hutten A, Thomas G (1992) Giant magnetoresistance in heterogeneous Cu–Co alloys. Phys Rev Lett 68:3745–3748. doi: 10.1103/PhysRevLett.68.3745 CrossRefGoogle Scholar
  5. Billas IML, Chatelain A, Deheer WA (1994) Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265:1682–1684. doi: 10.1126/science.265.5179.1682 CrossRefGoogle Scholar
  6. Bland JAC, Daboo C, Heinrich B, Celinski Z, Bateson RD (1995) Enhanced magnetic-moments in bcc Fe films. Phys Rev B 51:258–272. doi: 10.1103/PhysRevB.51.258 CrossRefGoogle Scholar
  7. Céspedes E, Huttel Y, Martínez L, de Andrés A, Chaboy J, Vila M, Telling ND, van der Laan G, Prieto C (2008) X-ray absorption and magnetic circular dichroism characterization of a novel ferromagnetic MnNx phase in Mn/Si3N4 multilayers. Appl Phys Lett 93:252506. doi: 10.1063/1.3050534 CrossRefGoogle Scholar
  8. Céspedes E, Babonneau D, Lyon O, Sánchez-Marcos J, Rouzière S, Prieto C, Olivi L, Traverse A (2010a) Characterization of two dimensional self-organized Au nanoparticles embedded in Si3N4. J Appl Phys 107:104306. doi: 10.1063/1.3359705 CrossRefGoogle Scholar
  9. Céspedes E, Toudert J, de Sousa Meneses D, Prieto C, Traverse A (2010b) Interplay between metal nanoparticles and dielectric spacing layers during the growth of Au/Si3N4 multilayers. J Appl Phys 108:124309. doi: 10.1063/1.3520676 CrossRefGoogle Scholar
  10. Dormann JL (1981) Superparamagnetism phenomenon. Rev Phys Appl (Paris) 16:275–301. doi: 10.1051/rphysap:01981001606027500 CrossRefGoogle Scholar
  11. Gambardella P, Rusponi S, Veronese M, Dhesi SS, Grazioli C, Dallmeyer A, Cabria I, Zeller R, Dederichs PH, Kern K, Carbone C, Brune H (2003) Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300:1130–1133. doi: 10.1126/science.1082857 CrossRefGoogle Scholar
  12. Gangopadhyay S, Hadjipanayis G, Dale B, Sorensen CM, Klabunde KJ, Papaefthymiou V, Kosticas A (1992) Magnetic-properties of ultrafine iron particles. Phys Rev B 45:9778–9787. doi: 10.1103/PhysRevB.45.9778 CrossRefGoogle Scholar
  13. García-García A, Vovk A, Pardo JA, Strichovanec P, Magen C, Snoeck E, Algarabel PA, de Teresa JM, Morellón L, Ibarra MR (2009) Magnetic properties of Fe/MgO granular multilayers prepared by pulsed laser deposition. J Appl Phys 105:063909. doi: 10.1063/1.3093945 CrossRefGoogle Scholar
  14. Gauvin M, Fullerton EE, Talke FE (2010) Investigation of Fe–Si–N films as magnetic overcoat for high density recording disk drives. J Appl Phys 108:063925. doi: 10.1063/1.3484035 CrossRefGoogle Scholar
  15. Gay-Sanz N, Prieto C, Muñoz-Martín A, de Andrés A, Vázquez M, Yu S-C (1999) Time evolution of the structural short-range order during the mechanical milling of Fe–Co–Cu nanocrystalline alloys. J Mater Res 14:3882–3888. doi: 10.1557/JMR.1999.0525 CrossRefGoogle Scholar
  16. Hattink BJ, García del Muro M, Konstantinovic Z, Batlle X, Labarta A, Varela M (2006) Tunneling magnetoresistance in Co–ZrO2 granular thin films. Phys Rev B 73:045418. doi: 10.1103/PhysRevB.73.045418 CrossRefGoogle Scholar
  17. Jiménez-Villacorta F, Muñoz-Martín A, Prieto C (2004) X-ray diffraction and extended x-ray absorption fine-structure characterization of nonspherical crystallographic grains in iron thin films. J Appl Phys 96:6224–6229. doi: 10.1063/1.1810636 CrossRefGoogle Scholar
  18. Jiménez-Villacorta F, Céspedes E, Vila M, Muñoz-Martín A, Castro GR, Prieto C (2008) Microstructural properties and local order around iron in granular metal-insulator Fe/Si3N4 systems prepared by magnetron sputtering. J Phys D Appl Phys 41:205009. doi: 10.1088/0022-3727/41/20/205009 CrossRefGoogle Scholar
  19. Jiménez-Villacorta F, Sánchez-Marcos J, Céspedes E, García-Hernández M, Prieto C (2010) Effects of interparticle interactions in magnetic Fe/Si3N4 granular systems. Phys Rev B 82:134413. doi: 10.1103/PhysRevB.82.134413 CrossRefGoogle Scholar
  20. Klementev KV (2001) Deconvolution problems in X-ray absorption fine structure spectroscopy. J Phys D Appl Phys 34:209–2247. doi: 10.1088/0022-3727/34/15/301 CrossRefGoogle Scholar
  21. Kotai E (1994) Computer methods for analysis and simulation of RBS and ERDA spectra. Nucl Instrum Methods B 85:588–596. doi: 10.1016/0168-583X(94)95888-2 CrossRefGoogle Scholar
  22. Luis F, Torres JM, García LM, Bartolomé J, Stankiewicz J, Petroff F, Fettar F, Maurice JL, Vaurès A (2002) Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of interparticle interactions. Phys Rev B 65:094409. doi: 10.1103/PhysRevB.65.094409 CrossRefGoogle Scholar
  23. Oleinik II, Tsymbal EY, Pettifor DG (2000) Structural and electronic properties of Co/Al2O3/Co magnetic tunnel junction from first principles. Phys Rev B 62:3952–3959. doi: 10.1103/PhysRevB.62.3952 CrossRefGoogle Scholar
  24. Rehr JJ, Albers RC (2000) Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 72:621–654. doi: 10.1103/RevModPhys.72.621 CrossRefGoogle Scholar
  25. Remashan K, Jang JH, Hwang DK, Park SJ (2007) ZnO-based thin film transistors having high refractive index silicon nitride gate. Appl Phys Lett 91:182101. doi: 10.1063/1.2804566 CrossRefGoogle Scholar
  26. Sánchez-Marcos J, Jiménez-Villacorta F, Céspedes E, Muñoz-Martín A, Prieto C (2011) Gold embedding influence on the magnetic behaviour of iron in Fe/Si3N4 multilayers prepared by sputtering. Mater Lett 65:13–16. doi: 10.1016/j.matlet.2010.09.046 CrossRefGoogle Scholar
  27. Serrano A, Pinel EF, Quesada A, Lorite I, Plaza M, Pérez L, Jiménez-Villacorta F, de la Venta J, Martín-González MS, Costa-Krämer JL, Fernandez JF, Llopis J, García MA (2009) Room-temperature ferromagnetism in the mixtures of the TiO2 and Co3O4 powders. Phys Rev B 79:144405. doi: 10.1103/PhysRevB.79.14440 CrossRefGoogle Scholar
  28. Soroka IL, Stanciu V, Lu J, Nordblad P, Hjörvarsson B (2005) Structural and magnetic properties of Al2O3/Ni81Fe19 thin films: from superparamagnetic nanoparticles to ferromagnetic multilayers. J Phys: Condens Matter 17:5027–5036. doi: 10.1088/0953-8984/33/007 CrossRefGoogle Scholar
  29. Stern EA (1988) Theory of EXAFS. In: Koningsberger DC, Prins R (eds) X-Ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York, pp 3–51Google Scholar
  30. Stipe BC, Strand TC, Poon CC, Balamane H, Boone TD, Katine JA, Li J-L, Rawat V, Nemoto H, Hirotsune A, Hellwig O, Ruiz R, Dobisz E, Kercher DS, Robertson N, Albrecht TR, Terris BD (2010) Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nat Photonics 4:484–488. doi: 10.1038/nphoton.2010.90 CrossRefGoogle Scholar
  31. Telling ND, Guilfoyle SJ, Lovett DR, Tang CC, Crapper MD, Petty MJ (1998) Evidence of roughness distributions and interface smoothing in Co/Cu multilayers deposited under energetic particle bombardment. J Phys D Appl Phys 31:472–481. doi: 10.1088/0022-3727/31/5/002 CrossRefGoogle Scholar
  32. Temnov VV, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin JM, Thomay T, Leitenstorfer A, Bratschitsch R (2010) Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nat Photonics 4:107–111. doi: 10.1038/NPHOTON.2009.265 CrossRefGoogle Scholar
  33. Victora RH (1989) Predicted time-dependence of the switching field for magnetic materials. Phys Rev Lett 63:457–460. doi: 10.1103/PhysRevLett.63.457 CrossRefGoogle Scholar
  34. Vila M, Cáceres D, Prieto C (2003a) Mechanical properties of sputtered silicon nitride thin films. J Appl Phys 94:7868–7873. doi: 10.1063/1.1626799 CrossRefGoogle Scholar
  35. Vila M, Prieto C, García-López J, Respaldiza MA (2003b) Influence of the target and working gas on the composition of silicon nitride thin films prepared by reactive RF-sputtering. Nucl Instrum Methods (B) 211:199–205. doi: 10.1016/S0168-583X(03)01211-4 CrossRefGoogle Scholar
  36. Vila M, Prieto C, Traverse A, Ramirez R (2005a) Effect of sputtering rate and ion irradiation on the microstructure and magnetic properties of Ni/Si3N4 multilayers. J Appl Phys 98:113507. doi: 10.1063/1.2137882 CrossRefGoogle Scholar
  37. Vila M, Román E, Prieto C (2005b) Electrical conduction mechanism in silicon nitride and oxy-nitride-sputtered thin films. J Appl Phys 97:113710. doi: 10.1063/1.1915538 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Sánchez-Marcos
    • 1
    • 2
  • E. Céspedes
    • 1
    • 5
  • F. Jiménez-Villacorta
    • 1
    • 3
    • 6
  • A. Muñoz-Martín
    • 4
  • C. Prieto
    • 1
  1. 1.Instituto de Ciencia de Materiales de MadridConsejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Dept. Química-Física AplicadaUniversidad Autónoma de MadridMadridSpain
  3. 3.SpLine Spanish CRG Beamline European Synchrotron Radiation Facilities, ESRFGrenoble CedexFrance
  4. 4.Centro de Microanálisis de MaterialesUniversidad Autónoma de MadridMadridSpain
  5. 5.Institute for Science and Technology in Medicine, Guy Hilton Research CentreKeele UniversityStoke-on-TrentUK
  6. 6.Department of Chemical EngineeringNortheastern UniversityBostonUSA

Personalised recommendations