A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae

  • Juanni Chen
  • Xiuping Wang
  • Heyou Han
Research Paper


Xanthomonas oryzae pv. oryzae (Xoo) is one representative phytopathogenic bacterium causing bacteria infections in rice. The antibacterial activity of graphene suspended in different dispersants against Xoo was first investigated. Bacteriological test data, fluorescence microscope and transmission electron microscopy images are provided, which yield insight into the antibacterial action of the nanoscale materials. Surprisingly, the results showed graphene oxide (GO) exhibits superior bactericidal effect even at extremely low dose in water (250 μg/mL), almost killing 94.48 % cells, in comparison to common bactericide bismerthiazol with only 13.3 % mortality. The high efficiency in inactivating the bacteria on account of considerable changes in the cell membranes caused by the extremely sharp edges of graphene oxide and generation of reactive oxygen species, which may be the fatal factor for bacterial inactivation. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced with low cost, we expect a new application could be developed as bactericide for controlling plant disease, which may be a matter of great importance for agricultural development.


Xanthomonas oryzae pv. oryzae Graphene Antibacterial activity Mechanisms Bactericide Agriculture 



The authors gratefully acknowledge the financial support for this research from National Natural Science Foundation of China (21175051), the Fundamental Research Funds for the Central Universities (2011PY139), and the Natural Science Foundation of Hubei Province Innovation Team (2011CDA115).

Supplementary material

11051_2013_1658_MOESM1_ESM.doc (476 kb)
Supplementary material 1 (DOC 476 kb)


  1. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736CrossRefGoogle Scholar
  2. Arias LR, Yang LJ (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25:3003–3012CrossRefGoogle Scholar
  3. Bai S, Shen XP (2012) Graphene-inorganic nanocomposites. RSC Adv 2:64–98CrossRefGoogle Scholar
  4. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733CrossRefGoogle Scholar
  5. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRefGoogle Scholar
  6. Begum P, Ikhtiari R et al (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919CrossRefGoogle Scholar
  7. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRefGoogle Scholar
  8. Chang YL, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu YF, Wang HF (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 3:201–210CrossRefGoogle Scholar
  9. Chen CZS, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368CrossRefGoogle Scholar
  10. Dang TC, Fujii M, Rose AL, Bligh M, Waitea TD (2012) Characteristics of the freshwater cyanobacterium microcystis aeruginosa grown in iron-limited continuous culture. Appl Environ Microbiol 78:1574–1583CrossRefGoogle Scholar
  11. Dong L, Joseph KL, Witkowski CM, Craig MM (2008) Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants. Nanotechnology 19(25):255702. doi: 10.1088/0957-4484/19/25/255702 CrossRefGoogle Scholar
  12. Gu K et al (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125CrossRefGoogle Scholar
  13. Hotze EM, Labille J, Alvarez P, Wiesner MR (2008) Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water. Environ Sci Technol 42:4175–4180CrossRefGoogle Scholar
  14. Hu WB, Peng C, Luo WJ, Lv M, Li XM, Li D, Huang Q, Fan CH (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323CrossRefGoogle Scholar
  15. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  16. Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, Schlager JJ, Terrones M (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1549–1559CrossRefGoogle Scholar
  17. Imfelda G, Vuilleumierb S (2012) Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur J Soil Biol 49:22–30CrossRefGoogle Scholar
  18. Jin Z, Nackashi D, Lu W, Kittrell C, Tour JM (2010) Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater 22:5695–5699CrossRefGoogle Scholar
  19. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413CrossRefGoogle Scholar
  20. Khodakovskaya MV, de Silvaa K, Nedosekinb DA, Dervishic E, Birisa AS, Shashkovb EV et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033CrossRefGoogle Scholar
  21. Leach JE, Leung H, Nelson HL, Mew TW (1995) Population biology of Xanthomonas oryzae pv. oryzae and approaches to its control. Curr Opin Biotechnol 6:298–304CrossRefGoogle Scholar
  22. Liao HH, Qi RL, Shen MW, Cao XY, Guo R, Zhang YZ, Shi XY (2011) Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloids Surf. B: Biointerfaces 84:528–535CrossRefGoogle Scholar
  23. Liu Z, Robinson JT, Sun XM, Dai HG (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877CrossRefGoogle Scholar
  24. Liu SB, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang YH, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902CrossRefGoogle Scholar
  25. Liu SB, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang RR, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980CrossRefGoogle Scholar
  26. Liu SB, Hu M, Zeng TH, Wu R, Jiang RR, Wei J, Wang L, Kong J, Chen Y (2012) Lateral dimension dependent antibacterial activity of graphene oxide sheets. Langmuir 28:12364–12372CrossRefGoogle Scholar
  27. Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132CrossRefGoogle Scholar
  28. Mew TW (1987) Current status and future prospects of research on bacterial blight of rice. Ann. Rev. Phytopathol 25:359–382CrossRefGoogle Scholar
  29. Monroc S, Badosa E, Besalú E, Planas M, Bardajía E, Montesinosb E, Feliua L (2006) Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides 27:2575–2584CrossRefGoogle Scholar
  30. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382CrossRefGoogle Scholar
  31. Ryba-White M, Notteghem JL, Leach JE (1995) Comparison of Xanthomonas oryzae pv. strains from Africa, north America and Asia by RFLP analysis. Intl Rice Res Notes 20:25–26Google Scholar
  32. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammmes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1563CrossRefGoogle Scholar
  33. Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487CrossRefGoogle Scholar
  34. Vidaver AK (2002) Uses of antimicrobials in plant agriculture. Clin Infect Dis 34:107–110CrossRefGoogle Scholar
  35. Vila M et al (2012) Cell uptake survey of pegylated nanographene oxide. Nanotechnology 13(46):465103. doi: 10.1088/0957-4484/23/46/465103 CrossRefGoogle Scholar
  36. Wang XP, Liu XQ, Han HY (2013) Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colliods Surf. B Biointerfaces 103:136–142CrossRefGoogle Scholar
  37. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857CrossRefGoogle Scholar
  38. Yang XY, Zhang XY, Liu ZF, Ma YF, Huang Y, Chen YS (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558CrossRefGoogle Scholar
  39. Zhang YB, Ali SF, Dervishi E, Xu Y, Li ZR, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186CrossRefGoogle Scholar
  40. Zhou Y, Bao QL, Tang LAL, Zhong YL, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Agricultural MicrobiologyCollege of Science, Huazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations