Skip to main content
Log in

A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Xanthomonas oryzae pv. oryzae (Xoo) is one representative phytopathogenic bacterium causing bacteria infections in rice. The antibacterial activity of graphene suspended in different dispersants against Xoo was first investigated. Bacteriological test data, fluorescence microscope and transmission electron microscopy images are provided, which yield insight into the antibacterial action of the nanoscale materials. Surprisingly, the results showed graphene oxide (GO) exhibits superior bactericidal effect even at extremely low dose in water (250 μg/mL), almost killing 94.48 % cells, in comparison to common bactericide bismerthiazol with only 13.3 % mortality. The high efficiency in inactivating the bacteria on account of considerable changes in the cell membranes caused by the extremely sharp edges of graphene oxide and generation of reactive oxygen species, which may be the fatal factor for bacterial inactivation. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced with low cost, we expect a new application could be developed as bactericide for controlling plant disease, which may be a matter of great importance for agricultural development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  CAS  Google Scholar 

  • Arias LR, Yang LJ (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25:3003–3012

    Article  CAS  Google Scholar 

  • Bai S, Shen XP (2012) Graphene-inorganic nanocomposites. RSC Adv 2:64–98

    Article  CAS  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  CAS  Google Scholar 

  • Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  • Begum P, Ikhtiari R et al (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919

    Article  CAS  Google Scholar 

  • Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  • Chang YL, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu YF, Wang HF (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 3:201–210

    Article  Google Scholar 

  • Chen CZS, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  Google Scholar 

  • Dang TC, Fujii M, Rose AL, Bligh M, Waitea TD (2012) Characteristics of the freshwater cyanobacterium microcystis aeruginosa grown in iron-limited continuous culture. Appl Environ Microbiol 78:1574–1583

    Article  CAS  Google Scholar 

  • Dong L, Joseph KL, Witkowski CM, Craig MM (2008) Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants. Nanotechnology 19(25):255702. doi:10.1088/0957-4484/19/25/255702

    Article  Google Scholar 

  • Gu K et al (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125

    Article  CAS  Google Scholar 

  • Hotze EM, Labille J, Alvarez P, Wiesner MR (2008) Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water. Environ Sci Technol 42:4175–4180

    Article  CAS  Google Scholar 

  • Hu WB, Peng C, Luo WJ, Lv M, Li XM, Li D, Huang Q, Fan CH (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, Schlager JJ, Terrones M (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1549–1559

    Article  CAS  Google Scholar 

  • Imfelda G, Vuilleumierb S (2012) Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur J Soil Biol 49:22–30

    Article  Google Scholar 

  • Jin Z, Nackashi D, Lu W, Kittrell C, Tour JM (2010) Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater 22:5695–5699

    Article  CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, de Silvaa K, Nedosekinb DA, Dervishic E, Birisa AS, Shashkovb EV et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033

    Article  CAS  Google Scholar 

  • Leach JE, Leung H, Nelson HL, Mew TW (1995) Population biology of Xanthomonas oryzae pv. oryzae and approaches to its control. Curr Opin Biotechnol 6:298–304

    Article  CAS  Google Scholar 

  • Liao HH, Qi RL, Shen MW, Cao XY, Guo R, Zhang YZ, Shi XY (2011) Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloids Surf. B: Biointerfaces 84:528–535

    Article  CAS  Google Scholar 

  • Liu Z, Robinson JT, Sun XM, Dai HG (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  • Liu SB, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang YH, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    Article  CAS  Google Scholar 

  • Liu SB, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang RR, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  Google Scholar 

  • Liu SB, Hu M, Zeng TH, Wu R, Jiang RR, Wei J, Wang L, Kong J, Chen Y (2012) Lateral dimension dependent antibacterial activity of graphene oxide sheets. Langmuir 28:12364–12372

    Article  CAS  Google Scholar 

  • Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132

    Article  CAS  Google Scholar 

  • Mew TW (1987) Current status and future prospects of research on bacterial blight of rice. Ann. Rev. Phytopathol 25:359–382

    Article  Google Scholar 

  • Monroc S, Badosa E, Besalú E, Planas M, Bardajía E, Montesinosb E, Feliua L (2006) Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides 27:2575–2584

    Article  CAS  Google Scholar 

  • Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    Article  CAS  Google Scholar 

  • Ryba-White M, Notteghem JL, Leach JE (1995) Comparison of Xanthomonas oryzae pv. strains from Africa, north America and Asia by RFLP analysis. Intl Rice Res Notes 20:25–26

    Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammmes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1563

    Article  CAS  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Vidaver AK (2002) Uses of antimicrobials in plant agriculture. Clin Infect Dis 34:107–110

    Article  Google Scholar 

  • Vila M et al (2012) Cell uptake survey of pegylated nanographene oxide. Nanotechnology 13(46):465103. doi:10.1088/0957-4484/23/46/465103

    Article  Google Scholar 

  • Wang XP, Liu XQ, Han HY (2013) Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colliods Surf. B Biointerfaces 103:136–142

    Article  CAS  Google Scholar 

  • Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

  • Yang XY, Zhang XY, Liu ZF, Ma YF, Huang Y, Chen YS (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    Article  CAS  Google Scholar 

  • Zhang YB, Ali SF, Dervishi E, Xu Y, Li ZR, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186

    Article  CAS  Google Scholar 

  • Zhou Y, Bao QL, Tang LAL, Zhong YL, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this research from National Natural Science Foundation of China (21175051), the Fundamental Research Funds for the Central Universities (2011PY139), and the Natural Science Foundation of Hubei Province Innovation Team (2011CDA115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyou Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wang, X. & Han, H. A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae . J Nanopart Res 15, 1658 (2013). https://doi.org/10.1007/s11051-013-1658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1658-6

Keywords

Navigation