Skip to main content
Log in

Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Peritoneal metastases of colorectal cancer are a significant challenge in the field of medicine today due to poor results of systemic chemotherapy caused by the poor diffusion of drugs across the blood–peritoneal barrier. Multi-walled carbon nanotubes (MWNTs) are a biocompatible nanomaterial that strongly absorb near-infrared light to locally heat the surrounding area. Colorectal cancer is known to overexpress folate receptor; therefore, folic acid (FA) was covalently attached to MWNTs to target colorectal cancer cells. Results from real-time polymerase chain reaction found differing expression of folate receptor-α in two colorectal cancer cell lines, RKO and HCT116, as well as a healthy epithelial cell line, HEPM. A spectrophotometric method was developed to quantify the mass of MWNTs bound to cells, and it was determined that FA-targeted MWNTs resulted in a 400–500 % greater affinity for colorectal cancer cells than untargeted MWNTs. The non-cancerous cell line, HEPM, had higher non-specific MWNT interaction and similar MWNT–FA affinity. Stimulated by 1,064 nm light, FA-functionalized MWNTs caused a 50–60 % decrease in colorectal cancer cell viability compared to a 4–10 % decrease caused by untargeted MWNTs. Our results indicate that FA-targeted MWNTs may increase the therapeutic index of MWNT-induced photothermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 4:459–461

    Article  Google Scholar 

  • American Cancer Society. Cancer Facts and Figures 2011

  • Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958. doi:10.1039/B201013p

    Article  CAS  Google Scholar 

  • Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15(20):1765–1768

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679. doi:10.1016/j.cbpa.2005.10.005

    Article  CAS  Google Scholar 

  • Burke A, Ding XF, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D’Agostino R, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci USA 106(31):12897–12902

    Article  CAS  Google Scholar 

  • Dhar S, Liu Z, Thomale J, Dai HJ, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476

    Article  CAS  Google Scholar 

  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56

    Article  Google Scholar 

  • Huang H, Yuan Q, Shah JS, Misra RD (2011a) A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev 63(14–15):1332–1339. doi:10.1016/j.addr.2011.04.001

    Article  CAS  Google Scholar 

  • Huang H, Yuan Q, Shah JS, Misra RDK (2011b) A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev 63(14–15):1332–1339

    Article  CAS  Google Scholar 

  • Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102(33):11600–11605

    Article  CAS  Google Scholar 

  • Levi-Polyachenko NH, Merkel EJ, Jones BT, Carroll DL, Stewart JH (2009) Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol Pharmaceut 6(4):1092–1099

    Article  CAS  Google Scholar 

  • Li RB, Wu R, Zhao L, Wu MH, Yang L, Zou HF (2010) P-Glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4(3):1399–1408

    Article  CAS  Google Scholar 

  • Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56

    Article  Google Scholar 

  • Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY, Dai HJ (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  CAS  Google Scholar 

  • Liu ZA, Yang K, Lee ST (2011) Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 21(3):586–598

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  • Marches R, Chakravarty P, Musselman IH, Bajaj P, Azad RN, Pantano P, Draper RK, Vitetta ES (2009) Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies. Int J Cancer 125(12):2970–2977

    Article  CAS  Google Scholar 

  • Mittal JP (1995) Excited-states and electron-transfer reactions of fullerenes. Pure Appl Chem 67(1):103–110

    Article  CAS  Google Scholar 

  • Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18(38):385102

    Article  Google Scholar 

  • Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3(11):3707–3713

    Article  CAS  Google Scholar 

  • Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Lett 402(4–6):422–427

    Article  CAS  Google Scholar 

  • Rosca ID, Watari F, Uo M, Akaska T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15):3124–3131. doi:10.1016/j.carbon.2005.06.019

    Article  CAS  Google Scholar 

  • Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant-tissues in-vivo and in established cell-lines—physiological and clinical implications. Cancer 73(9):2432–2443

    Article  CAS  Google Scholar 

  • Sideratou Z, Tsiourvas D, Theodossiou T, Fardis M, Paleos CM (2010) Synthesis and characterization of multifunctional hyperbranched polyesters as prospective contrast agents for targeted MRI. Bioorg Med Chem Lett 20(14):4177–4181

    Article  CAS  Google Scholar 

  • Torti SV, Byrne F, Whelan O, Levi N, Ucer B, Schmid M, Torti FM, Akman S, Liu J, Ajayan PM, Nalamasu O, Carroll DL (2007) Thermal ablation therapeutics based on CN(x) multi-walled nanotubes. Int J Nanomedicine 2(4):707–714

    CAS  Google Scholar 

  • Velasco-Santos C, Martinez-Hernandez AL, Lozada-Cassou M, Alvarez-Castillo A, Castano VM (2002) Chemical functionalization of carbon nanotubes through an organosilane. Nanotechnology 13(4):495–498

    Article  CAS  Google Scholar 

  • Vortherms AR, Doyle RP, Gao D, Debrah O, Sinko PJ (2008) Synthesis, characterization, and in vitro assay of folic acid conjugates of 3′-azido-3′-deoxythymidine (AZT): toward targeted AZT based anticancer therapeutics. Nucleosides Nucleotides Nucleic Acids 27(2):173–185. doi:10.1080/15257770701795946

    Article  CAS  Google Scholar 

  • Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drags, imaging agents, and nucleic acids to cancer cells. J Control Release 53(1–3):39–48

    Article  CAS  Google Scholar 

  • Yu SS, Lau CM, Thomas SN, Jerome WG, Maron DJ, Dickerson JH, Hubbell JA, Giorgio TD (2012) Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Int J Nanomed 7:799–813. doi:10.2147/IJN.S28531ijn-7-799

    Article  CAS  Google Scholar 

  • Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:85. doi:10.1186/1471-2105-7-85

    Article  Google Scholar 

  • Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30(30):6041–6047. doi:10.1016/j.biomaterials.2009.07.025

    Article  CAS  Google Scholar 

  • Zhu J, Kim JD, Peng HQ, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3(8):1107–1113. doi:10.1021/Nl0342489

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Plastic and Reconstructive Surgery at Wake Forest University Baptist Medical Center for funding and the Department of Chemistry at Wake Forest University for the use of the Raman, ESI–MS, NMR, and FTIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole H. Levi-Polyachenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, E.G., MacNeill, C.M. & Levi-Polyachenko, N.H. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation . J Nanopart Res 15, 1649 (2013). https://doi.org/10.1007/s11051-013-1649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1649-7

Keywords

Navigation