Structure of hollow spheres analyzed by X-ray diffraction, transmission electron microscopy, and dynamic light scattering

  • R. Popescu
  • P. Leidinger
  • C. Kind
  • C. Feldmann
  • D. Gerthsen
Research Paper


The structural properties of nanoscale Ag, La(OH)3, CuS (covellite), Ag2S (acanthite), and ZnO hollow spheres, massive Ag nanoparticles and In–Ag core–shell nanoparticles with outer diameters between 200 and 400 Å, were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), dynamic light scattering (DLS), and differential sedimentation (DS). Lognormal size distributions of single-crystalline (quasi)spherical nanoparticles are found in our samples by DLS, STEM, DS, and HRTEM. The lattice parameters of the nanomaterials are determined by XRD line–position analysis, while the volume-averaged size and the microstrain are derived by the average-size and strain approximation in the integral breadth method. A new expression is presented in this work to derive the real average outer diameter \( \bar{D} \) of hollow spherical particles. The good agreement between \( \bar{D} \) and the corresponding diameter determined by DLS in the case of Ag and La(OH)3 hollow spheres demonstrates the validity of the approach. The same expression is applied to derive the average wall thickness of CuS and Ag2S hollow spheres as well as for the Ag shell thickness of In–Ag core–shell nanoparticles.


Nanoparticle structure Hollow spheres Real average size X-ray diffraction Transmission electron microscopy 



One of the authors, RP thanks H.L. Meyerheim (Max-Planck Institut für Mikrostrukturphysik, Halle) for fruitful discussions. This study has been performed within the projects C1.4 and C4.5 of the DFG Research Center for Functional Nanostructures (CFN). It has been further supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 7713.14-300).


  1. Balzar D, Ledbetter H (1993) Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks. J Appl Cryst 26:97–103CrossRefGoogle Scholar
  2. Balzar D, Popovic S (1996) Reliability of the simplified integral-breadth methods in diffraction line-broadening analysis. J Appl Cryst 29:16–23CrossRefGoogle Scholar
  3. Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louer D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) Size-strain line-broadening analysis of the ceria round-robin sample. J Appl Cryst 37:911–924CrossRefGoogle Scholar
  4. Cheon YE, Suh MP (2009) Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal–organic framework. Angew Chem Int Ed 48:2899–2903CrossRefGoogle Scholar
  5. Das SK, Bhunia MK, Chakraborty D, Khuda-Bukhsh AR, Bhaumik A (2012) Hollow spherical mesoporous phosphosilicate nanoparticles as a delivery vehicle for an antibiotic drug. Chem Commun 48:2891–2893CrossRefGoogle Scholar
  6. Delhez R, de Keijser TH, Mittemeijer EJ (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius Z Anal Chem 312:1–16CrossRefGoogle Scholar
  7. Gröger H, Gyger F, Leidinger P, Zurmühl C, Feldmann C (2009) Microemulsion approach to nanocontainers and its variability in composition and filling. Adv Mater 21:1586–1590CrossRefGoogle Scholar
  8. Jona F, Marcus PM (1988) The structure of surfaces II. In: Van Hove MA, Tong SY (eds) Springer series in surface science, vol 11. Springer, Berlin, pp 100–104Google Scholar
  9. Kim HR, Choi KI, Kim KM, Kim ID, Cao G, Lee JH (2010) Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem Commun 46:5061–5063CrossRefGoogle Scholar
  10. Kind C, Popescu R, Gerthsen D, Feldmann C (2010) Microemulsion-based synthesis of nanoscaled silver hollow spheres and direct comparison with massive particles of similar size. Nanoscale 2:2223–2229CrossRefGoogle Scholar
  11. Klug HP, Alexander LE (1974) X-ray diffraction procedure, 2nd edn. Wiley, New YorkGoogle Scholar
  12. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) On the nature of strong hydrogen atom trapping inside pd nanoparticles. J Am Chem Soc 130:1828–1829CrossRefGoogle Scholar
  13. Langford JI, Delhez R, de Keijser TH, Mittemeijer EJ (1988) Profile analysis for microcrystalline properties by the Fourier and other methods. Aust J Phys 41:173–187CrossRefGoogle Scholar
  14. Langford JI (1978) A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J Appl Cryst 11:10–14CrossRefGoogle Scholar
  15. Langford JI (1992) In: Prince E, Stalick JK (eds) Accuracy in powder diffraction II, NIST special publication no. 846. US Department of Commerce, Gaithersburg, pp 110–126Google Scholar
  16. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11:102–113CrossRefGoogle Scholar
  17. Langford JI, Louer D, Scardi P (2000) Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting. J Appl Cryst 33:964–974CrossRefGoogle Scholar
  18. Lee MH, Hribar KC, Brugarolas T, Kamat NP, Burdick JA, Lee D (2012) Harnessing interfacial phenomena to program the release properties of hollow microcapsules. Adv Funct Mater 22:131–138CrossRefGoogle Scholar
  19. Leidinger P, Popescu R, Gerthsen D, Feldmann C (2010) Nanoscale La(OH)3 hollow spheres and fine-tuning of its outer diameter and cavity size. Small 6(17):1886–1891CrossRefGoogle Scholar
  20. Leidinger P, Popescu R, Gerthsen D, Lünsdorf H, Feldmann C (2011) Nanoscale copper sulfide hollow spheres with phase-engineered composition: covellite (CuS), digenite (Cu1.8S), chalcocite (Cu2S). Nanoscale 3:2544–2551CrossRefGoogle Scholar
  21. Leidinger P, Dingenouts N, Popescu R, Gerthsen D, Feldmann C (2012) ZnO nanocontainers: structural study and controlled release. J Mater Chem 22:14551–14558CrossRefGoogle Scholar
  22. Li HX, Bian ZF, Zhu J, Zhang DQ, Li GS, Huo YN, Li H, Lu YF (2007) Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407CrossRefGoogle Scholar
  23. Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019CrossRefGoogle Scholar
  24. Lou XW, Chang ML, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539CrossRefGoogle Scholar
  25. Nuño Z, Hessler B, Ochoa J, Shon YS, Bonney C, Abate Y (2011) Nanoscale subsurface- and material-specific identification of single nanoparticles. Opt Express 19:20865–20875CrossRefGoogle Scholar
  26. Nuño Z, Hessler B, Heiberg B, Damato R, Dunlap T, Shon YS, Abate Y (2012) Nanoscale near-field infrared spectroscopic imaging of silica-shell/gold-core and pure silica nanoparticles. J Nanopart Res 14:766–773CrossRefGoogle Scholar
  27. Pang H, Yang H, Guo CX, Lu J, Li CM (2012) Nanoparticle self-assembled hollow TiO2 spheres with well matching visible light scattering for high performance dye-sensitized solar cells. Chem Commun 48:8832–8834CrossRefGoogle Scholar
  28. Popa NC, Balzar D (2002) An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. J Appl Cryst 35:338–346CrossRefGoogle Scholar
  29. Popocvic S (1984) Application of bell-shaped functions in X-ray diffraction broadening analysis. Croat Chem Acta 57:749–755Google Scholar
  30. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Gött 2:98–100Google Scholar
  31. Schoening FRL (1965) Strain and particle size values from X-ray line breadths. Acta Cryst 18:975–976CrossRefGoogle Scholar
  32. Simonato S, Gröger H, Möllmer J, Staudt R, Puls A, Dreisbach F, Feldmann C (2012) Sorption and separation of CO2 via nanoscale AlO(OH) hollow spheres. Chem Commun 48:844–846CrossRefGoogle Scholar
  33. Stokes AR, Wilson AJC (1942) A method of calculating the integral breadths of Debye-Scherrer lines. Proc Cambridge Philos Soc 38:313–322CrossRefGoogle Scholar
  34. Stokes AR, Wilson AJC (1944) The diffraction of X-rays by distorted crystal aggregates I. Proc Phys Soc London 56:174–181CrossRefGoogle Scholar
  35. Taylor KML, Kim JS, Rieter WJ, An H, Lin W, Lin W (2008) Mesoporous Silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130:2154–2155CrossRefGoogle Scholar
  36. Wagner CNJ (1966) In: Cohen JB, Willard JE (eds) Local atomic arrangements studied by X-ray diffraction. Gordon and Breach, New York, p 381Google Scholar
  37. Warren BE (1959) In: Chalmers B, King R (eds) Progress in metal physics, vol 8. Pergamon Press, London, pp 146–202Google Scholar
  38. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRefGoogle Scholar
  39. Xu J, White T, Li P, He C, Yu J, Yuan W, Han YF (2010) Biphasic Pd–Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc 132:10398–10406CrossRefGoogle Scholar
  40. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium–ion battery anodes with long cycle life. Nano Lett 11:2949–2954CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. Popescu
    • 1
  • P. Leidinger
    • 2
  • C. Kind
    • 2
  • C. Feldmann
    • 2
  • D. Gerthsen
    • 1
  1. 1.Laboratorium für ElekronenmikroskopieKarlsruher Institut für Technologie (KIT)KarlsruheGermany
  2. 2.Institut für Anorganische Chemie, KITKarlsruheGermany

Personalised recommendations