Skip to main content
Log in

Structure of hollow spheres analyzed by X-ray diffraction, transmission electron microscopy, and dynamic light scattering

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The structural properties of nanoscale Ag, La(OH)3, CuS (covellite), Ag2S (acanthite), and ZnO hollow spheres, massive Ag nanoparticles and In–Ag core–shell nanoparticles with outer diameters between 200 and 400 Å, were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), dynamic light scattering (DLS), and differential sedimentation (DS). Lognormal size distributions of single-crystalline (quasi)spherical nanoparticles are found in our samples by DLS, STEM, DS, and HRTEM. The lattice parameters of the nanomaterials are determined by XRD line–position analysis, while the volume-averaged size and the microstrain are derived by the average-size and strain approximation in the integral breadth method. A new expression is presented in this work to derive the real average outer diameter \( \bar{D} \) of hollow spherical particles. The good agreement between \( \bar{D} \) and the corresponding diameter determined by DLS in the case of Ag and La(OH)3 hollow spheres demonstrates the validity of the approach. The same expression is applied to derive the average wall thickness of CuS and Ag2S hollow spheres as well as for the Ag shell thickness of In–Ag core–shell nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balzar D, Ledbetter H (1993) Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks. J Appl Cryst 26:97–103

    Article  Google Scholar 

  • Balzar D, Popovic S (1996) Reliability of the simplified integral-breadth methods in diffraction line-broadening analysis. J Appl Cryst 29:16–23

    Article  CAS  Google Scholar 

  • Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louer D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) Size-strain line-broadening analysis of the ceria round-robin sample. J Appl Cryst 37:911–924

    Article  CAS  Google Scholar 

  • Cheon YE, Suh MP (2009) Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal–organic framework. Angew Chem Int Ed 48:2899–2903

    Article  CAS  Google Scholar 

  • Das SK, Bhunia MK, Chakraborty D, Khuda-Bukhsh AR, Bhaumik A (2012) Hollow spherical mesoporous phosphosilicate nanoparticles as a delivery vehicle for an antibiotic drug. Chem Commun 48:2891–2893

    Article  CAS  Google Scholar 

  • Delhez R, de Keijser TH, Mittemeijer EJ (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius Z Anal Chem 312:1–16

    Article  CAS  Google Scholar 

  • Gröger H, Gyger F, Leidinger P, Zurmühl C, Feldmann C (2009) Microemulsion approach to nanocontainers and its variability in composition and filling. Adv Mater 21:1586–1590

    Article  Google Scholar 

  • Jona F, Marcus PM (1988) The structure of surfaces II. In: Van Hove MA, Tong SY (eds) Springer series in surface science, vol 11. Springer, Berlin, pp 100–104

    Google Scholar 

  • Kim HR, Choi KI, Kim KM, Kim ID, Cao G, Lee JH (2010) Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem Commun 46:5061–5063

    Article  CAS  Google Scholar 

  • Kind C, Popescu R, Gerthsen D, Feldmann C (2010) Microemulsion-based synthesis of nanoscaled silver hollow spheres and direct comparison with massive particles of similar size. Nanoscale 2:2223–2229

    Article  CAS  Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedure, 2nd edn. Wiley, New York

    Google Scholar 

  • Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) On the nature of strong hydrogen atom trapping inside pd nanoparticles. J Am Chem Soc 130:1828–1829

    Article  CAS  Google Scholar 

  • Langford JI, Delhez R, de Keijser TH, Mittemeijer EJ (1988) Profile analysis for microcrystalline properties by the Fourier and other methods. Aust J Phys 41:173–187

    Article  CAS  Google Scholar 

  • Langford JI (1978) A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J Appl Cryst 11:10–14

    Article  CAS  Google Scholar 

  • Langford JI (1992) In: Prince E, Stalick JK (eds) Accuracy in powder diffraction II, NIST special publication no. 846. US Department of Commerce, Gaithersburg, pp 110–126

    Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11:102–113

    Article  CAS  Google Scholar 

  • Langford JI, Louer D, Scardi P (2000) Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting. J Appl Cryst 33:964–974

    Article  CAS  Google Scholar 

  • Lee MH, Hribar KC, Brugarolas T, Kamat NP, Burdick JA, Lee D (2012) Harnessing interfacial phenomena to program the release properties of hollow microcapsules. Adv Funct Mater 22:131–138

    Article  Google Scholar 

  • Leidinger P, Popescu R, Gerthsen D, Feldmann C (2010) Nanoscale La(OH)3 hollow spheres and fine-tuning of its outer diameter and cavity size. Small 6(17):1886–1891

    Article  CAS  Google Scholar 

  • Leidinger P, Popescu R, Gerthsen D, Lünsdorf H, Feldmann C (2011) Nanoscale copper sulfide hollow spheres with phase-engineered composition: covellite (CuS), digenite (Cu1.8S), chalcocite (Cu2S). Nanoscale 3:2544–2551

    Article  CAS  Google Scholar 

  • Leidinger P, Dingenouts N, Popescu R, Gerthsen D, Feldmann C (2012) ZnO nanocontainers: structural study and controlled release. J Mater Chem 22:14551–14558

    Article  CAS  Google Scholar 

  • Li HX, Bian ZF, Zhu J, Zhang DQ, Li GS, Huo YN, Li H, Lu YF (2007) Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    Article  CAS  Google Scholar 

  • Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  • Lou XW, Chang ML, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539

    Article  CAS  Google Scholar 

  • Nuño Z, Hessler B, Ochoa J, Shon YS, Bonney C, Abate Y (2011) Nanoscale subsurface- and material-specific identification of single nanoparticles. Opt Express 19:20865–20875

    Article  Google Scholar 

  • Nuño Z, Hessler B, Heiberg B, Damato R, Dunlap T, Shon YS, Abate Y (2012) Nanoscale near-field infrared spectroscopic imaging of silica-shell/gold-core and pure silica nanoparticles. J Nanopart Res 14:766–773

    Article  Google Scholar 

  • Pang H, Yang H, Guo CX, Lu J, Li CM (2012) Nanoparticle self-assembled hollow TiO2 spheres with well matching visible light scattering for high performance dye-sensitized solar cells. Chem Commun 48:8832–8834

    Article  CAS  Google Scholar 

  • Popa NC, Balzar D (2002) An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. J Appl Cryst 35:338–346

    Article  CAS  Google Scholar 

  • Popocvic S (1984) Application of bell-shaped functions in X-ray diffraction broadening analysis. Croat Chem Acta 57:749–755

    Google Scholar 

  • Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Gött 2:98–100

    Google Scholar 

  • Schoening FRL (1965) Strain and particle size values from X-ray line breadths. Acta Cryst 18:975–976

    Article  CAS  Google Scholar 

  • Simonato S, Gröger H, Möllmer J, Staudt R, Puls A, Dreisbach F, Feldmann C (2012) Sorption and separation of CO2 via nanoscale AlO(OH) hollow spheres. Chem Commun 48:844–846

    Article  CAS  Google Scholar 

  • Stokes AR, Wilson AJC (1942) A method of calculating the integral breadths of Debye-Scherrer lines. Proc Cambridge Philos Soc 38:313–322

    Article  CAS  Google Scholar 

  • Stokes AR, Wilson AJC (1944) The diffraction of X-rays by distorted crystal aggregates I. Proc Phys Soc London 56:174–181

    Article  CAS  Google Scholar 

  • Taylor KML, Kim JS, Rieter WJ, An H, Lin W, Lin W (2008) Mesoporous Silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130:2154–2155

    Article  CAS  Google Scholar 

  • Wagner CNJ (1966) In: Cohen JB, Willard JE (eds) Local atomic arrangements studied by X-ray diffraction. Gordon and Breach, New York, p 381

    Google Scholar 

  • Warren BE (1959) In: Chalmers B, King R (eds) Progress in metal physics, vol 8. Pergamon Press, London, pp 146–202

    Google Scholar 

  • Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  • Xu J, White T, Li P, He C, Yu J, Yuan W, Han YF (2010) Biphasic Pd–Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc 132:10398–10406

    Article  CAS  Google Scholar 

  • Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium–ion battery anodes with long cycle life. Nano Lett 11:2949–2954

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, RP thanks H.L. Meyerheim (Max-Planck Institut für Mikrostrukturphysik, Halle) for fruitful discussions. This study has been performed within the projects C1.4 and C4.5 of the DFG Research Center for Functional Nanostructures (CFN). It has been further supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 7713.14-300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Popescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popescu, R., Leidinger, P., Kind, C. et al. Structure of hollow spheres analyzed by X-ray diffraction, transmission electron microscopy, and dynamic light scattering. J Nanopart Res 15, 1648 (2013). https://doi.org/10.1007/s11051-013-1648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1648-8

Keywords

Navigation