Manipulation of half-metallicity and ferromagnetism in N-doped CdS nanowire

  • Fu-bao Zheng
  • Chang-wen Zhang
  • Shi-shen Yan
  • Feng Li
Research Paper


The spin-polarization and magnetic coupling of N-doped CdS nanowires (NWs) with a diameter size of 12.33 Ǻ have been investigated through first-principles calculations. The doped N prefers surface S sites and leads to a half-metallic property. The magnetic interaction between the nearest and the next-nearest N dopants results in a strong ferromagnetic (FM) coupling, while, when the distance between N dopants is larger than 8.0 Ǻ, the ground state of the system tends to be paramagnetic. Also, a nitrogen concentration threshold to produce the FM order is estimated to be 8.3 %. The results of incorporation of N dopants to CdS NWs pave a promising way to realize potential applications in spintronics.


First-principles calculations CdS nanowire Ferromagnetism 



This study was supported by National Natural Science Foundation of China (Grant Nos. 61076088 and 11274143), and Technological Development Program in Shandong Province Education Department (Grant No. J10LA16).


  1. Awschalom D, Flatté ME (2007) Chanllenges for semiconductor spintronics. Nat Phys 3:153–159CrossRefGoogle Scholar
  2. Bao NN, Fan HM, Ding J, Yi JB (2011) Room temperature ferromagnetism in N-doped rutile TiO2 films. J Appl Phys 109:07C3021–07C3023Google Scholar
  3. Coey JMD, Chamber SA (2008) Oxide dilute magnetic semiconductors-fact or fiction? MRS Bull 33:1053–1058CrossRefGoogle Scholar
  4. Hong NH, Song JH, Raghavender AT, Asaeda T, Kurisu M (2011) Ferromagnetism in C-doped SnO2 thin films. Appl Phys Lett 99:0525051–0525053Google Scholar
  5. Kim JY, Park JH, Park BG, Noh HJ, Oh SJ, Yang JS, Kim DH, Bu SD, Noh TW, Lin HJ, Hsieh HH, Chen CT (2003) Ferromagnetism induced by clustered co in co-doped anatase TiO2 thin films. Phys Rev Lett 90:0174011–0174014Google Scholar
  6. Kresse G, Furthmuller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  7. Kresse G, Furthmuller J (1996b) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  8. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  9. Kudrnovsky J, Turek I, Drchal V, Maca F, Weinberger P, Bruno P (2004) Exchange interactions in III-V and group-IV diluted magnetic semiconductors. Phys Rev B 69:1152081–11520811Google Scholar
  10. Lin Y, Song J, Ding Y, Lu S, Wang ZL (2008) Piezoelectric nanogenerator using CdS nanowires. Appl Phys Lett 92:0221051–0221053Google Scholar
  11. Maca F, Kudrnovsky J, Drchal V, Bouzerar G (2008) Magnetism without magnetic impurities in ZrO2 oxide. Appl Phys Lett 92:2125031–2125033CrossRefGoogle Scholar
  12. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations Phys. Rev B 13:5188–5192CrossRefGoogle Scholar
  13. Pan H, Yi JB, Shen L, Wu RQ, Yang JH, Lin JY, Feng YP, Ding J, Van LH, Yin JH (2007) Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett 99:1272011–1272014CrossRefGoogle Scholar
  14. Pan H, Feng Y, Wu Q, Huang Z, Lin J (2008) Magnetic properties of carbon doped CdS: a first-principles and Monte Carlo study. Phys Rev B 77:1252111–1252114Google Scholar
  15. Slipukhina I, Mavropoulos P, Blugel S, Lezaic M (2011) FerromagneticSpin coupling of 2p impurities in band insulators stabilized by an intersite coulomb interaction: nitrogen-doped MgO. Phys Rev Lett 107:1372031–1372035CrossRefGoogle Scholar
  16. Song J, Zhou J, Wang ZL (2006) Piezoelectric and semiconducting coupled power generating process of a single ZnO Belt/Wire. a technology for harvesting electricity from the environment. Nano Lett 6:1656–1662CrossRefGoogle Scholar
  17. Tan X, Chen C, Jin K, Luo B (2011) Room-temperature ferromagnetism in nitrogen-doped BaTiO3. J Alloys Compd 509:L311–L313CrossRefGoogle Scholar
  18. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zincoxide nanowire arrays. Science 312:242–246CrossRefGoogle Scholar
  19. Wang XD, Song J, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–105CrossRefGoogle Scholar
  20. Wang Q, Sun Q, Jena P (2009) N-doped ZnO thin films and nanowires: energetics, impurity distribution and magnetism. New J Phys 11:0630351–06303514Google Scholar
  21. Wen QY, Zhang HW, Yang QH, Gu DE, Li YX, Liu YL, Shen J, Xiao JQ (2009) Magnetic characteristics of carbon-doped nanocrystalline TiO2. IEEE Trans Magn 45:4096–4099CrossRefGoogle Scholar
  22. Yang K, Dai Y, Huang B, Whangbo MH (2008) On the possibility of ferromagnetism in carbon-doped anatase TiO2. Appl Phys Lett 93:1325071–1325073Google Scholar
  23. Zhang CW, Yan SS (2009) First-principles study on ferromagnetism in Mg-doped SnO2. Appl Phys Lett 95:2321081–2321083Google Scholar
  24. Zhang CW, Wang PJ, Su Y (2010) First-principles study on ferromagnetism in nitrogen-doped CdO. Phys Lett A 374:1889–1892CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fu-bao Zheng
    • 1
  • Chang-wen Zhang
    • 1
  • Shi-shen Yan
    • 2
  • Feng Li
    • 1
  1. 1.School of Physics and TechnologyUniversity of JinanJinanPeople’s Republic of China
  2. 2.School of Physics, State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations