Simple preparation and initial characterization of semi-amorphous hollow calcium silicate hydrate nanoparticles by ammonia-hydrothermal-template techniques

  • Raymond V. Rivera Virtudazo
  • Hideo Watanabe
  • Takashi Shirai
  • Masayoshi Fuji
Research Paper


Semi-amorphous hollow calcium silicate hydrate nanoparticles (CS10d120Hac) were successfully synthesized via simple ammonia-hydrothermal-template approach (AHT) followed by acid treatment. Results revealed that the newly synthesized samples had homogenous hollow nano-interior wherein the shell wall contained semi-amorphous calcium silicate hydrate. The AHT intensified the formation of a stronger electrostatic interaction (Si–O–Ca) from the weaker electrostatic contact composed of silicate wall-calcium hydroxide interaction (Si–OH–Ca) forming a thin semi-amorphous calcium silicate hydrate shell wall. This is also a convenient way for structural stability of the hollow CS10d120Hac. The CS10d120Hac showed a relatively higher surface area, which is uniquely rare especially if compared with bulk calcium silicate particles. This CS10d120Hac can be selectively functionalized with multiple organic and inorganic groups. Hence, this work may open a new route for the formation of hybrid hollow bio-active particles.


Calcium silicate hydrate Hollow nanoparticles Colloidal Hydrothermal-template synthesis 



The authors gratefully acknowledge that this research was partially supported by the Japanese Government Ministry of Education, Culture, Sports, Science and Technology (MEXT; Monbukagakusho Scholarship) and Grant-in-Aid for Scientific Research 22310066 (2010–2012). We are also thankful to C.C. Chua-Nakar (Reviewer-Inorganic Chemistry, Ramon Sison Review Center) for the useful technical discussion and assistance with this study.

Conflict of interest

The author declares that they have no competing interest.

Supplementary material

11051_2013_1604_MOESM1_ESM.doc (860 kb)
Supplementary materials (the abbreviation and further characterization details of the results on SEM/TEM images, XRD analysis, Nitrogen adsorption desorption isotherms, detailed schematic possible reactions of CS10d120Hac) is available in the online version of this article. (DOC 860 kb)


  1. Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat Mater 6(4):311–316. doi: 10.1038/nmat1871 CrossRefGoogle Scholar
  2. Baltakys K, Jauberthie R, Siauciunas R, Kaminskas R (2007) Influence of modification of SiO2 on the formation of calcium silicate hydrate. Mater Sci (Pol) 25(3):663–670Google Scholar
  3. Blakely CK, Bruno SR, Poltavets VV (2011) Low-temperature solvothermal approach to the synthesis of La4Ni3O8 by topotactic oxygen deintercalation. Inorg Chem 50(14):6696–6700. doi: 10.1021/ic200677p CrossRefGoogle Scholar
  4. Brunner TJ, Grass RN, Stark WJ (2006) Glass and bioglass nanopowders by flame synthesis. Chem Commun (Camb) 13:1384–1386. doi: 10.1039/b517501a CrossRefGoogle Scholar
  5. Chang Y, Chen S, Cao A (2010) Mechanism of pressure-accelerated solvothermal reduction of graphene oxide. J Shanghai Univ (Natl Sci Edn) 6:008. doi: cnki:sun:sdxz.0.2010-06-008 Google Scholar
  6. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34(9):1499–1519. doi: 10.1016/j.cemconres.2004.04.034 CrossRefGoogle Scholar
  7. Chen F, Zhu Y-J, Zhang K-H, Wu J, Wang K-W, Tang Q-L, Mo X-M (2011) Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res Lett 6(1):67. doi: 10.1186/1556-276x-6-67 CrossRefGoogle Scholar
  8. Chippindale AM, Cowley AR, Walton RI (1996) Solvothermal synthesis and structural characterisation of the first ammonium cobalt gallium phosphate hydrate, NH4[CoGa2P3O12(H2O)2]. J Mater Chem 6(4):611–614. doi: 10.1039/Jm9960600611 CrossRefGoogle Scholar
  9. Coleman NJ, Bellantone M, Nicholson JW, Mendham AP (2007) Textural and structural properties of bioactive glasses in the system CaO–SiO2. Ceram Silik 51(1):1–8Google Scholar
  10. Devaraju MK, Yin S, Sato T (2009) A fast and template free synthesis of Tb:Y2O3 hollow microspheres via supercritical solvothermal method. Cryst Growth Des 9(6):2944–2949. doi: 10.1021/cg9002934 CrossRefGoogle Scholar
  11. Fuji M, Takai C, Takahashi M (2005) Synthesis of Nano-size hollow particles and its application. In: The 2006 Spring National Meeting, 2006Google Scholar
  12. Fuji M, Takai C, Tarutani Y, Takei T, Takahashi M (2007) Surface properties of nanosize hollow silica particles on the molecular level. Adv Powder Technol 18(1):81–91. doi: 10.1163/156855207779768124 CrossRefGoogle Scholar
  13. Fuji M, Shin T, Watanabe H, Takei T (2012) Shape-controlled hollow silica nanoparticles synthesized by an inorganic particle template method. Adv Powder Technol 23(5):562–565. doi: 10.1016/j.apt.2011.06.002 CrossRefGoogle Scholar
  14. Gandolfi MG, Ciapetti G, Taddei P, Perut F, Tinti A, Cardoso MV, Van Meerbeek B, Prati C (2010) Apatite formation on bioactive calcium–silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dent Mater 26(10):974–992. doi: 10.1016/ CrossRefGoogle Scholar
  15. Gou Z, Chang J (2004) Synthesis and in vitro bioactivity of dicalcium silicate powders. J Eur Ceram Soc 24(1):93–99. doi: 10.1016/s0955-2219(03)00320-0 CrossRefGoogle Scholar
  16. Hong S-H, Young JF (1999) Hydration kinetics and phase stability of dicalcium silicate synthesized by the Pechini process. J Am Ceram Soc 82(7):1681–1686. doi: 10.1111/j.1151-2916.1999.tb01986.x CrossRefGoogle Scholar
  17. Hoshino S, Yamada K, Hirao H (2006) XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. J Adv Concr Technol 4(3):357–367. doi: 10.3151/jact.4.357 CrossRefGoogle Scholar
  18. Huang X, Jiang D, Tan S (2002) Novel hydrothermal synthesis method for tobermorite fibers and investigation on their thermal stability. Mater Res Bull 37(11):1885–1892. doi: 10.1016/s0025-5408(02)00854-1 CrossRefGoogle Scholar
  19. Ishida H, Mabuchi K, Sasaki K, Mitsuda T (1992a) Low-temperature synthesis of β-Ca2SiO4 from Hillebrandite. J Am Ceram Soc 75(9):2427–2432. doi: 10.1111/j.1151-2916.1992.tb05595.x CrossRefGoogle Scholar
  20. Ishida H, Sasaki K, Mitsuda T (1992b) Highly reactive β-dicalcium silicate: I, hydration behavior at room temperature. J Am Ceram Soc 75(2):353–358. doi: 10.1111/j.1151-2916.1992.tb08186.x CrossRefGoogle Scholar
  21. Ishida H, Yamazaki S, Sasaki K, Okada Y, Mitsuda T (1993) α-Dicalcium silicate hydrate: preparation, decomposed phase, and its hydration. J Am Ceram Soc 76(7):1707–1712. doi: 10.1111/j.1151-2916.1993.tb06638.x CrossRefGoogle Scholar
  22. Kim Y-M, Hong S-H (2004) Influence of minor ions on the stability and hydration rates of β-dicalcium silicate. J Am Ceram Soc 87(5):900–905. doi: 10.1111/j.1551-2916.2004.00900.x CrossRefGoogle Scholar
  23. Kim JA, Suh JK, Jeong SY, Lee JM, Ryu SK (2000) Hydration reaction in synthesis of crystalline-layered sodium silicate. J Ind Eng Chem 6(4):219–225Google Scholar
  24. Li XK, Chang J (2004) Synthesis of wollastonite single crystal nanowires by a novel hydrothermal route. Chem Lett 33(11):1458–1459. doi: 10.1246/cl.2004.1458 CrossRefGoogle Scholar
  25. Li H, Chang J (2005) Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J Controlled Release 107(3):463–473. doi: 10.1016/j.jconrel.2005.05.019 CrossRefGoogle Scholar
  26. Lin HP, Mou CY (2002) Salt effect in post-synthesis hydrothermal treatment of MCM-41. Micropor Mesopor Mat 55(1):69–80. doi: 10.1016/s1387-1811(02)00407-9 CrossRefGoogle Scholar
  27. Lin HP, Mou CY, Liu SB (1999) Ammonia hydrothermal treatment on mesoporous silica structure synthesized from acidic route. Chem Lett 12:1341–1342. doi: 10.1246/Cl.1999.1341 CrossRefGoogle Scholar
  28. Lin HP, Mou CY, Liu SB (2000) Formation of mesoporous silica nanotubes. Adv Mater 12(2):103–106. doi: 10.1002/(sici)1521-4095(200001)12:2<103:aid-adma103>;2-p CrossRefGoogle Scholar
  29. Lin HP, Mou CY, Liu SB, Tang CY, Lin CY (2001) Post-synthesis treatment of acid-made mesoporous silica materials by ammonia hydrothermal process. Micropor Mesopor Mat 44–45:129–137. doi: 10.1016/s1387-1811(01)00176-7 CrossRefGoogle Scholar
  30. Mitsuda T, Toraya H (1986) Hydrothermally formed γ-Ca2SiO4: cell parameters and thermogravimetry. Cem Concr Res 16(1):105–110. doi: 10.1016/0008-8846(86)90074-8 CrossRefGoogle Scholar
  31. Nicoleau L (2010) New calcium silicate hydrate network. Transp Res Rec 2142(1):42–51. doi: 10.3141/2142-07 CrossRefGoogle Scholar
  32. Okada Y, Ishida H, Sasaki K, Young JF, Mitsuda T (1994) Characterization of C–S–H from highly reactive β-dicalcium silicate prepared from Hillebrandite. J Am Ceram Soc 77(5):1313–1318. doi: 10.1111/j.1151-2916.1994.tb05408.x CrossRefGoogle Scholar
  33. Parfenov VA, Kirik SD (2003) Effect of reaction medium on hydrothermal stability of mesostructured silicate material MCM-41. Chem Sustain Dev 11:735–740Google Scholar
  34. Park DH, Nishiyama N, Egashira Y, Ueyama K (2001) Enhancement of hydrothermal stability and hydrophobicity of a silica MCM-48 membrane by silylation. Ind Eng Chem Res 40(26):6105–6110. doi: 10.1021/ie0103761 CrossRefGoogle Scholar
  35. Pei LZ, Yang LJ, Yang Y, Fan CG, Yin WY, Chen J, Zhang QF (2010) A green and facile route to synthesize calcium silicate nanowires. Mater Charact 61(11):1281–1285. doi: 10.1016/j.matchar.2010.07.002 CrossRefGoogle Scholar
  36. Qing Y, Zenan Z, Deyu K, Rongshen C (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 21(3):539–545. doi: 10.1016/j.conbuildmat.2005.09.001 CrossRefGoogle Scholar
  37. Ríos CA, Williams CD, Fullen MA (2009) Hydrothermal synthesis of hydrogarnet and tobermorite at 175 °C from kaolinite and metakaolinite in the CaO–Al2O3–SiO2–H2O system: a comparative study. Appl Clay Sci 43(2):228–237. doi: 10.1016/j.clay.2008.09.014 CrossRefGoogle Scholar
  38. Saravanapavan P, Hench LL (2003) Mesoporous calcium silicate glasses. I. Synthesis. J Non Cryst Solids 318(1–2):1–13. doi: 10.1016/s0022-3093(02)01864-1 CrossRefGoogle Scholar
  39. Saravanapavan P, Jones JR, Pryce RS, Hench LL (2003) Bioactivity of gel–glass powders in the CaO–SiO2 system: a comparison with ternary (CaO–P2P5–SiO2) and quaternary glasses (SiO2–CaO–P2O2–Na2O). J Biomed Mater Res Part A 66A(1):110–119. doi: 10.1002/jbm.a.10532 CrossRefGoogle Scholar
  40. Shin T, Fuji M, Takei T, Chikazawa K, Tanabe K, Mitsuhashi K (2003) Evaluation of structure of silica nano hollow particles prepared with fine calcium carbonate particles as a template. Proceedings of 83rd Annual Meeting of the Chemical Society of Japan. p 366Google Scholar
  41. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface-area and porosity. Pure Appl Chem 57(4):603–619. doi: 10.1351/pac198557040603 CrossRefGoogle Scholar
  42. Takagi M, Maeda H, Ishida EH (2009) Hydrothermal solidification of green tuff/tobermorite composites. J Ceram Soc Jpn 117(1371):1221–1224. doi: 10.2109/jcersj2.117.1221 CrossRefGoogle Scholar
  43. Takai C, Fuji M, Fujimoto K (2011) Skeletal silica nanoparticles prepared by control of reaction polarity. Chem Lett 40(12):1346–1348. doi: 10.1246/Cl.2011.1346 CrossRefGoogle Scholar
  44. Taylor HFW (1986) Proposed structure for calcium silicate hydrate gel. J Am Ceram Soc 69(6):464–467. doi: 10.1111/j.1151-2916.1986.tb07446.x CrossRefGoogle Scholar
  45. Udawatte CP, Yanagisawa K, Kamakura T, Matsumoto Y, Yamasaki N (2000) Solidification of xonotlite fibers with chitosan by hydrothermal hot pressing. Mater Lett 45(6):298–301. doi: 10.1016/s0167-577x(00)00121-x CrossRefGoogle Scholar
  46. Virtudazo RVR, Watanabe H, Fuji M, Takahashi M (2010) A simple approach to form hydrothermally stable templated hollow silica nanoparticles. In: Ewsuk K, Naito M, Kakeshita T, Kirihara S, Uematsu K, Abe H (eds) Characterization and control of interfaces for high quality advanced materials III. Wiley, New Jersey, pp 91–97. doi: 10.1002/9780470917145.ch14 CrossRefGoogle Scholar
  47. Wang J, Tomita A (1997) Hydrothermal reaction of Ca(OH)2 with quartz in connection with coal demineralization. Ind Eng Chem Res 36(5):1464–1469. doi: 10.1021/ie960516k CrossRefGoogle Scholar
  48. Watanabe O, Kitamura K, Maenami H, Ishida H (2001) Hydrothermal treatment of a silica sand complex with lime. J Am Ceram Soc 84(10):2318–2322. doi: 10.1111/j.1151-2916.2001.tb01008.x CrossRefGoogle Scholar
  49. Wei Q, Wang F, Nie ZR, Song CL, Wang YL, Li QY (2008) Highly hydrothermally stable microporous silica membranes for hydrogen separation. J Phys Chem B 112(31):9354–9359. doi: 10.1021/jp711573f CrossRefGoogle Scholar
  50. Wu J, Zhu YJ, Cao SW, Chen F (2010) Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: surfactant-free sonochemical synthesis and drug-delivery system with ultrahigh drug-loading capacity. Adv Mater 22(6):749–753. doi: 10.1002/adma.200903020 CrossRefGoogle Scholar
  51. Yanagisawa K, Hu X, Onda A, Kajiyoshi K (2006) Hydration of β-dicalcium silicate at high temperatures under hydrothermal conditions. Cem Concr Res 36(5):810–816. doi: 10.1016/j.cemconres.2005.12.009 CrossRefGoogle Scholar
  52. Zhang M, Chang J (2010) Surfactant-assisted sonochemical synthesis of hollow calcium silicate hydrate (CSH) microspheres for drug delivery. Ultrason Sonochem 17(5):789–792. doi: 10.1016/j.ultsonch.2010.01.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Raymond V. Rivera Virtudazo
    • 1
  • Hideo Watanabe
    • 1
  • Takashi Shirai
    • 1
  • Masayoshi Fuji
    • 1
  1. 1.Advanced Ceramics Research Center, Nagoya Institute of TechnologyTajimiJapan

Personalised recommendations