Advertisement

Shape-influenced magnetic properties of CoO nanoparticles

  • Subrata Kundu
  • A. J. Nelson
  • S. K. McCall
  • Tony van Buuren
  • Hong Liang
Research Paper

Abstract

Using a wet chemical approach, CoO nanospheres, nanorings, nanoflowers, and nanowires of different sizes were generated. Among those, nanorings show ferromagnetic behavior below 6 K while the nanospheres remain paramagnetic. X-ray photoelectron spectroscopy for Co 2p, 3p, and 3s core-levels indicates the paramagnetic high-spin Co(II) electronic configuration. This finding reveals the optical, electronic, and magnetic behavior of CoO nanoparticles (NPs) that opens new opportunities for future applications as catalysts precursors for making pigments, lithium-ion battery materials, or as solid-state sensors as anisotropy source for magnetic recording.

Graphical abstract

Using a wet chemical approach, CoO nanospheres, nanorings, nanoflowers, and nanowires of different sizes were generated. Among those, nanorings show ferromagnetic behavior below 6 K while the nanospheres remain paramagnetic. X-ray photoelectron spectroscopy for Co 2p, 3p, and 3s core-levels indicates the paramagnetic high-spin Co(II) electronic configuration. This finding reveals the optical, electronic, and magnetic behavior of CoO nanoparticles (NPs) that opens opportunities for future applications as catalysts precursors for making pigments, lithium-ion battery materials, or as solid-state sensors as anisotropy source for magnetic recording.

Keywords

Magnetic nanoparticles CoO nanostructures Paramagnetic Ferromagnetic Electronic structures 

Notes

Acknowledgments

This research was in part sponsored by the NSF-0506082; the Department of Mechanical Engineering, Texas A&M University; and the Texas Engineering Experiments Station. Supports for TEM and EDS by Dr. Zhiping Luo at the Microscopy Imaging Center (MIC), Texas A&M University were greatly appreciated. This study performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Supplementary material

11051_2013_1587_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  2. Athawale AA, Majumdar M, Singh H, Navinkiran K (2010) Synthesis of cobalt oxide nanoparticles/fibres in alcoholic medium using g-ray technique. Def Sci J 60:507–513Google Scholar
  3. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964CrossRefGoogle Scholar
  4. Chen Y, Johnson E, Peng X (2007) Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening. J Am Chem Soc 129:10937–10947CrossRefGoogle Scholar
  5. Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, New YorkCrossRefGoogle Scholar
  6. Dinega DP, Bawendi MG (1999) A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed 38:1788–1791CrossRefGoogle Scholar
  7. Do JS, Weng CH (2005) Preparation and characterization of CoO used as anodic material of lithium battery. J Power Sour 146:482–486CrossRefGoogle Scholar
  8. Dutta DP, Sharma G, Manna PK, Tyagi AK, Yusuf SM (2008) Room temperature ferromagnetism in CoO nanoparticles obtained from sonochemically synthesized precursors. Nanotechnology 19:245609–245615CrossRefGoogle Scholar
  9. Feldmann C, Jungk H–O (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew Chem Int Ed 40:359–362CrossRefGoogle Scholar
  10. Ghosh M, Sampathkumaran EV, Rao CNR (2005) Synthesis and magnetic properties of CoO nanoparticles. Chem Mater 17:2348–2352CrossRefGoogle Scholar
  11. Henglein A (1999) Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15:6738–6744CrossRefGoogle Scholar
  12. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067CrossRefGoogle Scholar
  13. Jana NR, Chen Y, Peng X (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co., Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935CrossRefGoogle Scholar
  14. Jang H, Seong C, Suh Y, Kim H, Lee C (2011) Synthesis of lithium–cobalt oxide nanoparticles by flame spray pyrolysis. Aerosol Sci Technol 38:1027–1032Google Scholar
  15. Keng PY, Kim BY, Shim I, Sahoo R, Veneman PE, Armstrong NR, Yoo H, Pemberton JE, Bull MM, Griebel JJ, Ratcliff EL, Nebesny KG, Pyun J (2009) Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires. ACS Nano 3:3143–3157CrossRefGoogle Scholar
  16. Kim J-W, Choi SH, Lillehei PT, Chu S-H, King GC, Watt GD (2005) Cobalt oxide hollow nanoparticles derived by bio-templating. Chem Commun 32:4101–4103CrossRefGoogle Scholar
  17. Kundu S, Liang H (2008a) Photochemical synthesis of electrically conductive CdS nanowires on DNA scaffolds. Adv Mater 20:826–831CrossRefGoogle Scholar
  18. Kundu S, Liang H (2008b) Microwave synthesis of electrically conductive gold nanowires on DNA scaffolds. Langmuir 24:9668–9674CrossRefGoogle Scholar
  19. Kundu S, Liang H (2010) Photoinduced formation of shape-selective Pt nanoparticles. Langmuir 26:6720–6727CrossRefGoogle Scholar
  20. Kundu S, Peng L, Liang H (2008) A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation. Inorg Chem 47:6344–6352CrossRefGoogle Scholar
  21. Kundu S, Lau S, Liang H (2009a) Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J Phys Chem C 113:5150–5156CrossRefGoogle Scholar
  22. Kundu S, Wang K, Liang H (2009b) Photochemical generation of catalytically active shape selective rhodium nanocubes. J Phys Chem C 113:18570–18577CrossRefGoogle Scholar
  23. Kundu S, Wang K, Liang H (2009c) Size-controlled synthesis and self-assembly of silver nanoparticles within a minute using microwave irradiation. J Phys Chem C 113:134–141CrossRefGoogle Scholar
  24. Lagunas A, Payeras AM, Jimeno C, Puntes VF, Pericas MA (2008) Low-temperature synthesis of CoO nanoparticles via chemically assisted oxidative decarbonylation. Chem Mater 20:92–100CrossRefGoogle Scholar
  25. Li L, Sasaki T, Shimizu Y, Koshizaki N (2009) Controlled cobalt oxide from two-dimensional films to one-dimensional nanorods and zero-dimensional nanoparticles: morphology-dependent optical carbon monoxide gas-sensing properties. J Phys Chem C 113:15948–15954CrossRefGoogle Scholar
  26. Liu JF, Yin S, Wu HP, Zeng YW, Hu XR, Wang YW, Lv GL, Jiang JZ (2006) Wurtzite-to-rocksalt structural transformation in nanocrystalline CoO. J Phys Chem B 110:21588–21592CrossRefGoogle Scholar
  27. Liu X, Yi R, Zhang N, Shi R, Li X, Qiu G (2008) Cobalt hydroxide nanosheets and their thermal decomposition to cobalt oxide nanorings. Chem Asian J 3:732–738CrossRefGoogle Scholar
  28. Mandal M, Kundu S, Sau TK, Yusuf SM, Pal T (2003) Synthesis and characterization of superparamagnetic Ni–Pt nanoalloy. Chem Mater 15:3710–3715CrossRefGoogle Scholar
  29. Meng Z, Liu B, Zheng J, Sheng O, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Microchim Acta 175:251–257CrossRefGoogle Scholar
  30. Nam KM, Shim JH, Han D, Kwon HS, Kang Y, Li Y, Song H, Seo H, Seo W, Park JT (2010) Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: their interconversion and tuning of phase and morphology. Chem Mater 22:4446–4454CrossRefGoogle Scholar
  31. Pal A (1998) Photoinitiated gold sol generation in aqueous triton X-100 and its analytical application for spectrophotometric determination of gold. Talanta 46:583–587CrossRefGoogle Scholar
  32. Pal A, Pal T (1999) Silver nanoparticle aggregate formation by a photochemical method and its application to SERS analysis. J Raman Spectrosc 30:199–204CrossRefGoogle Scholar
  33. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRefGoogle Scholar
  34. Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320CrossRefGoogle Scholar
  35. Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP (2002) Synthesis of hcp-Co nanodisks. J Am Chem Soc 124:12874–12880CrossRefGoogle Scholar
  36. Risbud AS, Snedeker LP, Elcombe MM, Cheetham AK, Seshadri R (2005) Wurtzite CoO. Chem Mater 17:834–838CrossRefGoogle Scholar
  37. Shao Y, Sun J, Gao L (2009) Hydrothermal synthesis of hierarchical nanocolumns of cobalt hydroxide and cobalt oxide. J Phys Chem C 113:6566–6572CrossRefGoogle Scholar
  38. Silva NJO, Millán A, Palacio F, Martins M, Trindade T, Puente-Orench I, Campo J (2010) Remanent magnetization in CoO antiferromagnetic nanoparticles. Phys Rev B 82:094433–094440CrossRefGoogle Scholar
  39. Sinkó K, Szabó G, Zrínyi M (2011) Liquid-phase synthesis of cobalt oxide nanoparticles. J Nanosci Nanotechnol 11:4127–4135CrossRefGoogle Scholar
  40. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850–853CrossRefGoogle Scholar
  41. Verelst M, Ely TO, Amiens C, Snoeck E, Lecante P, Mosset A, Respaud M, Broto JM, Chaudret B (1999) Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticles. Chem Mater 11:2702–2708CrossRefGoogle Scholar
  42. Wdowik UD, Parlinski K (2008) Electronic structure of cation-deficient CoO from first principles. Phys Rev B 77:115110–115112CrossRefGoogle Scholar
  43. Yang G, Gao D, Shi Z, Zhang Z, Zhang J, Zhang J, Xue D (2010) Room temperature ferromagnetism in vacuum-annealed CoO nanospheres. J Phys Chem C 114:21989–21993CrossRefGoogle Scholar
  44. Yin JS, Wang ZL (1997) In situ structural evolution of self-assembled oxide nanocrystals. J Phys Chem B 101:8979–8983CrossRefGoogle Scholar
  45. Zhan YJ, Yin CR, Wang WZ, Wang GH (2003) Synthesis of CoO fibers in pyrolytic process. Mater Lett 57:3402–3405CrossRefGoogle Scholar
  46. Zhang L, Xue DJ (2002) Preparation and magnetic properties of pure CoO nanoparticles. J Mat Sci Lett 21:1931–1933CrossRefGoogle Scholar
  47. Zhang Y, Zhu J, Song X, Zhong X (2008) Controlling the synthesis of CoO nanocrystals with various morphologies. J Phys Chem C 112:5322–5327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Materials Science and Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Condensed Matter and Materials Division, Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Electrochemical Materials Science (ECMS) DivisionCSIR-Central Electrochemical Research Institute (CSIR-CECRI)KaraikudiIndia

Personalised recommendations