Skip to main content
Log in

Shape-influenced magnetic properties of CoO nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Using a wet chemical approach, CoO nanospheres, nanorings, nanoflowers, and nanowires of different sizes were generated. Among those, nanorings show ferromagnetic behavior below 6 K while the nanospheres remain paramagnetic. X-ray photoelectron spectroscopy for Co 2p, 3p, and 3s core-levels indicates the paramagnetic high-spin Co(II) electronic configuration. This finding reveals the optical, electronic, and magnetic behavior of CoO nanoparticles (NPs) that opens new opportunities for future applications as catalysts precursors for making pigments, lithium-ion battery materials, or as solid-state sensors as anisotropy source for magnetic recording.

Graphical abstract

Using a wet chemical approach, CoO nanospheres, nanorings, nanoflowers, and nanowires of different sizes were generated. Among those, nanorings show ferromagnetic behavior below 6 K while the nanospheres remain paramagnetic. X-ray photoelectron spectroscopy for Co 2p, 3p, and 3s core-levels indicates the paramagnetic high-spin Co(II) electronic configuration. This finding reveals the optical, electronic, and magnetic behavior of CoO nanoparticles (NPs) that opens opportunities for future applications as catalysts precursors for making pigments, lithium-ion battery materials, or as solid-state sensors as anisotropy source for magnetic recording.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  • Athawale AA, Majumdar M, Singh H, Navinkiran K (2010) Synthesis of cobalt oxide nanoparticles/fibres in alcoholic medium using g-ray technique. Def Sci J 60:507–513

    CAS  Google Scholar 

  • Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  • Chen Y, Johnson E, Peng X (2007) Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening. J Am Chem Soc 129:10937–10947

    Article  CAS  Google Scholar 

  • Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, New York

    Book  Google Scholar 

  • Dinega DP, Bawendi MG (1999) A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed 38:1788–1791

    Article  CAS  Google Scholar 

  • Do JS, Weng CH (2005) Preparation and characterization of CoO used as anodic material of lithium battery. J Power Sour 146:482–486

    Article  CAS  Google Scholar 

  • Dutta DP, Sharma G, Manna PK, Tyagi AK, Yusuf SM (2008) Room temperature ferromagnetism in CoO nanoparticles obtained from sonochemically synthesized precursors. Nanotechnology 19:245609–245615

    Article  Google Scholar 

  • Feldmann C, Jungk H–O (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew Chem Int Ed 40:359–362

    Article  CAS  Google Scholar 

  • Ghosh M, Sampathkumaran EV, Rao CNR (2005) Synthesis and magnetic properties of CoO nanoparticles. Chem Mater 17:2348–2352

    Article  CAS  Google Scholar 

  • Henglein A (1999) Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15:6738–6744

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  • Jana NR, Chen Y, Peng X (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co., Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935

    Article  CAS  Google Scholar 

  • Jang H, Seong C, Suh Y, Kim H, Lee C (2011) Synthesis of lithium–cobalt oxide nanoparticles by flame spray pyrolysis. Aerosol Sci Technol 38:1027–1032

    Google Scholar 

  • Keng PY, Kim BY, Shim I, Sahoo R, Veneman PE, Armstrong NR, Yoo H, Pemberton JE, Bull MM, Griebel JJ, Ratcliff EL, Nebesny KG, Pyun J (2009) Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires. ACS Nano 3:3143–3157

    Article  CAS  Google Scholar 

  • Kim J-W, Choi SH, Lillehei PT, Chu S-H, King GC, Watt GD (2005) Cobalt oxide hollow nanoparticles derived by bio-templating. Chem Commun 32:4101–4103

    Article  Google Scholar 

  • Kundu S, Liang H (2008a) Photochemical synthesis of electrically conductive CdS nanowires on DNA scaffolds. Adv Mater 20:826–831

    Article  CAS  Google Scholar 

  • Kundu S, Liang H (2008b) Microwave synthesis of electrically conductive gold nanowires on DNA scaffolds. Langmuir 24:9668–9674

    Article  CAS  Google Scholar 

  • Kundu S, Liang H (2010) Photoinduced formation of shape-selective Pt nanoparticles. Langmuir 26:6720–6727

    Article  CAS  Google Scholar 

  • Kundu S, Peng L, Liang H (2008) A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation. Inorg Chem 47:6344–6352

    Article  CAS  Google Scholar 

  • Kundu S, Lau S, Liang H (2009a) Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J Phys Chem C 113:5150–5156

    Article  CAS  Google Scholar 

  • Kundu S, Wang K, Liang H (2009b) Photochemical generation of catalytically active shape selective rhodium nanocubes. J Phys Chem C 113:18570–18577

    Article  CAS  Google Scholar 

  • Kundu S, Wang K, Liang H (2009c) Size-controlled synthesis and self-assembly of silver nanoparticles within a minute using microwave irradiation. J Phys Chem C 113:134–141

    Article  CAS  Google Scholar 

  • Lagunas A, Payeras AM, Jimeno C, Puntes VF, Pericas MA (2008) Low-temperature synthesis of CoO nanoparticles via chemically assisted oxidative decarbonylation. Chem Mater 20:92–100

    Article  CAS  Google Scholar 

  • Li L, Sasaki T, Shimizu Y, Koshizaki N (2009) Controlled cobalt oxide from two-dimensional films to one-dimensional nanorods and zero-dimensional nanoparticles: morphology-dependent optical carbon monoxide gas-sensing properties. J Phys Chem C 113:15948–15954

    Article  CAS  Google Scholar 

  • Liu JF, Yin S, Wu HP, Zeng YW, Hu XR, Wang YW, Lv GL, Jiang JZ (2006) Wurtzite-to-rocksalt structural transformation in nanocrystalline CoO. J Phys Chem B 110:21588–21592

    Article  CAS  Google Scholar 

  • Liu X, Yi R, Zhang N, Shi R, Li X, Qiu G (2008) Cobalt hydroxide nanosheets and their thermal decomposition to cobalt oxide nanorings. Chem Asian J 3:732–738

    Article  CAS  Google Scholar 

  • Mandal M, Kundu S, Sau TK, Yusuf SM, Pal T (2003) Synthesis and characterization of superparamagnetic Ni–Pt nanoalloy. Chem Mater 15:3710–3715

    Article  CAS  Google Scholar 

  • Meng Z, Liu B, Zheng J, Sheng O, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Microchim Acta 175:251–257

    Article  CAS  Google Scholar 

  • Nam KM, Shim JH, Han D, Kwon HS, Kang Y, Li Y, Song H, Seo H, Seo W, Park JT (2010) Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: their interconversion and tuning of phase and morphology. Chem Mater 22:4446–4454

    Article  CAS  Google Scholar 

  • Pal A (1998) Photoinitiated gold sol generation in aqueous triton X-100 and its analytical application for spectrophotometric determination of gold. Talanta 46:583–587

    Article  CAS  Google Scholar 

  • Pal A, Pal T (1999) Silver nanoparticle aggregate formation by a photochemical method and its application to SERS analysis. J Raman Spectrosc 30:199–204

    Article  CAS  Google Scholar 

  • Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  Google Scholar 

  • Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320

    Article  CAS  Google Scholar 

  • Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP (2002) Synthesis of hcp-Co nanodisks. J Am Chem Soc 124:12874–12880

    Article  CAS  Google Scholar 

  • Risbud AS, Snedeker LP, Elcombe MM, Cheetham AK, Seshadri R (2005) Wurtzite CoO. Chem Mater 17:834–838

    Article  CAS  Google Scholar 

  • Shao Y, Sun J, Gao L (2009) Hydrothermal synthesis of hierarchical nanocolumns of cobalt hydroxide and cobalt oxide. J Phys Chem C 113:6566–6572

    Article  CAS  Google Scholar 

  • Silva NJO, Millán A, Palacio F, Martins M, Trindade T, Puente-Orench I, Campo J (2010) Remanent magnetization in CoO antiferromagnetic nanoparticles. Phys Rev B 82:094433–094440

    Article  Google Scholar 

  • Sinkó K, Szabó G, Zrínyi M (2011) Liquid-phase synthesis of cobalt oxide nanoparticles. J Nanosci Nanotechnol 11:4127–4135

    Article  Google Scholar 

  • Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850–853

    Article  CAS  Google Scholar 

  • Verelst M, Ely TO, Amiens C, Snoeck E, Lecante P, Mosset A, Respaud M, Broto JM, Chaudret B (1999) Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticles. Chem Mater 11:2702–2708

    Article  CAS  Google Scholar 

  • Wdowik UD, Parlinski K (2008) Electronic structure of cation-deficient CoO from first principles. Phys Rev B 77:115110–115112

    Article  Google Scholar 

  • Yang G, Gao D, Shi Z, Zhang Z, Zhang J, Zhang J, Xue D (2010) Room temperature ferromagnetism in vacuum-annealed CoO nanospheres. J Phys Chem C 114:21989–21993

    Article  CAS  Google Scholar 

  • Yin JS, Wang ZL (1997) In situ structural evolution of self-assembled oxide nanocrystals. J Phys Chem B 101:8979–8983

    Article  CAS  Google Scholar 

  • Zhan YJ, Yin CR, Wang WZ, Wang GH (2003) Synthesis of CoO fibers in pyrolytic process. Mater Lett 57:3402–3405

    Article  CAS  Google Scholar 

  • Zhang L, Xue DJ (2002) Preparation and magnetic properties of pure CoO nanoparticles. J Mat Sci Lett 21:1931–1933

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu J, Song X, Zhong X (2008) Controlling the synthesis of CoO nanocrystals with various morphologies. J Phys Chem C 112:5322–5327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was in part sponsored by the NSF-0506082; the Department of Mechanical Engineering, Texas A&M University; and the Texas Engineering Experiments Station. Supports for TEM and EDS by Dr. Zhiping Luo at the Microscopy Imaging Center (MIC), Texas A&M University were greatly appreciated. This study performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrata Kundu or Hong Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, S., Nelson, A.J., McCall, S.K. et al. Shape-influenced magnetic properties of CoO nanoparticles. J Nanopart Res 15, 1587 (2013). https://doi.org/10.1007/s11051-013-1587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1587-4

Keywords

Navigation