Skip to main content
Log in

Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An important drawback of semiconductor gas sensors is their operating temperature that needs the use of heaters. To overcome this problem a prototyping sensor using titania nanofibres (with an average diameter of 50 nm) as sensitive membrane were fabricated by electrospinning directly on the transducer of the sensor. Exploiting the effect of titania photoconductivity, resistance variations upon gas interaction under continuous irradiation of ultra violet light were measured at room temperature. The resistive sensor response was evaluated towards ammonia, nitrogen dioxide and humidity. The sensor exhibited a higher response to ammonia than to nitrogen dioxide, especially for concentrations larger than 100 ppb. For 200 ppb of ammonia and nitrogen dioxide, the responses were ~2.8 and 1.5 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bajpai R, Motayed A, Davydov AV, Oleshko VP, Aluri GS, Bertness KA, Rao MV, Zaghloul ME (2012) UV-assisted alcohol sensing using SnO2 functionalized GaN nanowire devices. Sens Actuators B 171–172:499–507

    Article  Google Scholar 

  • Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  • Bearzotti A, Macagnano A, Pantalei S, Zampetti E, Venditti I, Fratoddi I, Russo MV (2008) Alcohol vapor sensory properties of nanostructured conjugated polymers. J Phys Condens Matter 20:474207

    Article  Google Scholar 

  • Brajsa A, Szaniawska K, Barczynski RJ, Murawski L, Koscielska B, Vomvas A, Pomoni K (2004) The photoconductivity of sol–gel derived TiO2 films. Opt Mater 26:151–153

    Article  CAS  Google Scholar 

  • Breedon M, Spizzirri P, Taylor M, Du Plessis J, McCulloch D, Zhu J, Yu L, Hu Z, Rix C, Wlodarski W, Kalantar-zadeh K (2010) Synthesis of nanostructured tungsten oxide thin films: a simple, controllable, inexpensive, aqueous sol–gel method. Cryst Growth Des 10:430–439

    Article  CAS  Google Scholar 

  • Carotta MC, Martinelli G, Crema L, Malagù C, Merli M, Ghiotti G, Traversa E (2001) Nanostructured thick film gas sensors for atmospheric pollutant monitoring: quantitative analysis on field tests. Sens Actuators B 76:336–342

    Article  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  • Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C 6:186–205

    Article  CAS  Google Scholar 

  • Chen X, Mao SS (2006) Synthesis of titanium dioxide (TiO2) nanomaterials. J Nanosci Nanotechnol 6:906–925

    Article  CAS  Google Scholar 

  • Chen PC, Shen G, Zhou C (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Trans Nanotechnol 7:668–682

    Google Scholar 

  • Comini E, Cristalli A, Faglia G, Sberveglieri G (2000) Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sens Actuators B 65:260–263

    Article  Google Scholar 

  • Comini E, Faglia G, Sberveglieri G (2001) UV activation of tin oxide thinfilms for NO2 sensing at low temperatures. Sens Actuators B 78:73–77

    Article  Google Scholar 

  • Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  • Eppler AM, Ballard IM, Nelson J (2002) Charge transport in porous nanocrystalline titanium dioxide. Phys E 14:197–202

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    Article  CAS  Google Scholar 

  • Golego N, Studeniki SA, Cocivera M (2000) Effect of oxygen on transient photoconductivity in thin-film Nb x Ti1-x O2. Phys Rev B 61:8262–8269

    Article  CAS  Google Scholar 

  • Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457

    Article  CAS  Google Scholar 

  • Gui Y, Li S, Xu J, Li C (2008) Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature. Microelectron J 39:1120–1125

    Article  CAS  Google Scholar 

  • Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308

    Article  CAS  Google Scholar 

  • Hirano M, Matsushima K (2006) Effect of niobium on the structure and photoactivity of anatase (TiO2) nanoparticles. J Nanosci Nanotechnol 6:762–770

    Article  CAS  Google Scholar 

  • Ho W, Yu JC (2006) Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. J Mol Catal A Chem 247:268–274

    Article  CAS  Google Scholar 

  • Hu J, Pan J, Zhu F, Gong H (2004) Evidence of nitric-oxide-induced surface band bending of indium tin oxide. J Appl Phys 95:6273

    Article  CAS  Google Scholar 

  • Huang XJ, Choi YK (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671

    Google Scholar 

  • Lala NL, Jose R, Yusoff MM, Ramakrishna S (2012) Continuous tubular nanofibers of vanadium pentoxide by electrospinning for energy storage devices. J Nanopart Res 14:1201–1210

    Article  Google Scholar 

  • Law M, Kind H, Messer B, Kim F, Yang P (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 41:2405–2408

    Article  CAS  Google Scholar 

  • Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Lu P, Ding B (2008) Applications of electrospun fibers. Recent Pat Nanotechnol 2:169–182

    Article  CAS  Google Scholar 

  • Maiyalagan T, Viswanathan B, Varadaraju UV (2006) Electro-oxidation of methanol on TiO2 nanotube supported platinum electrodes. J Nanosci Nanotechnol 6:2067–2071

    Article  CAS  Google Scholar 

  • Marion EF, Tobias JK, Ulrich S (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–51

    Article  Google Scholar 

  • Mo Y, Okawa Y, Tajima M, Nakai T, Yoshiike N, Natukawa K (2001) Micro-machined gas sensor array based on metal film micro-heater. Sens Actuators B 79:175–181

    Article  Google Scholar 

  • Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  • Peng L, Xie TF, Yang M, Wang P, Pang S, Wang DJ (2008) Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature. Sens Actuators B 131:660–664

    Article  Google Scholar 

  • Peng L, Zhao Q, Wang D, Zhai J, Wang P, Pang S, Xie T (2009) A potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sens Actuators B 136:80–85

    Article  Google Scholar 

  • Pomoni K, Vomvas A, Chr Trapalis (2008a) Electrical conductivity and photoconductivity studies of TiO2 sol–gel thin films and the effect of N-doping. J Non Cryst Solids 354:4448–4457

    Article  CAS  Google Scholar 

  • Pomoni K, Vomvas A, Chr Trapalis (2008b) Dark conductivity and transient photoconductivity of nanocrystalline undoped and N-doped TiO2 sol–gel thin films. Thin Solid Films 516:1271–1278

    Article  CAS  Google Scholar 

  • Rahmani MB, Keshmiri SH, Yu J, Sadek AZ, Al-Mashat L, Moafi A, Latham K, Li YX, Wlodarski W, Kalantar-zadeh K (2010) Gas sensing properties of thermally evaporated lamellar MoO3. Sens Actuators B 145:13–19

    Article  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo WE, Yong T, Zuwei Ma, Ramakrishna R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50

    Article  CAS  Google Scholar 

  • Sadek AZ, Zheng H, Latham K, Wlodarski W, Kalantar-zadeh K (2009) Anodization of Ti thin film deposited on ITO. Langmuir 25:509–514

    Article  CAS  Google Scholar 

  • Sawicka KM, Gouma P (2006) Electrospun composite nanofibers for functional applications. J Nanopart Res 8:769–778

    Article  CAS  Google Scholar 

  • Semancik S, Cox DF (1987) Fundamental characterization of clean and gas-dosed tin oxide. Sens Actuators 12:101–106

    Article  CAS  Google Scholar 

  • Spannhake J, Schulz O, Helwig A, Krenkow A, Müller G, Doll T (2006) High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials. Sensors 6:405–419

    Article  Google Scholar 

  • Stathatos E, Lianos P, Monte FD, Levy D, Tsiourvas D (1997) Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates. Langmuir 13:4295–4300

    Article  CAS  Google Scholar 

  • Traversa E, Sadaoka Y, Carotta MC, Martinelli G (2000) Environmental monitoring field tests using screen-printed thick-film sensors based on semiconducting oxides. Sens Actuators B 65:181–185

    Article  Google Scholar 

  • Traversa E, Di Vona ML, Licoccia S, Sacerdoti M, Carotta MC, Crema L, Martinelli G (2001) Sol–gel processed TiO2-based nano-sized powders for use in thick-film gas sensors for atmospheric pollutant monitoring. J Sol–Gel Sci Technol 22:167–179

    Article  CAS  Google Scholar 

  • Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuators B 9:338–344

    Article  Google Scholar 

  • Venditti I, Bearzotti A, Macagnano A, Russo MV (2007) Enhanced sensitivity of polyphenylacetylene and poly[phenylacetylene-(Co-2-hydroxyethyl methacrylate)] nanobeads to humidity. Sens Lett 5:528–532

    Article  CAS  Google Scholar 

  • Yang TY, Lin HM, Wei BY, Wu CY, Lin CK (2003) UV enhancement of the gas sensing properties of nano-TiO2. Rev Adv Mater Sci 4: 48–54. ISSN 1605-8127. http://www.ipme.ru/e-journals/RAMS/no_1403/lin/lin.html. Accessed 15 Mar 2013

    Google Scholar 

  • Yang M, Xie TF, Peng L, Zhao Y, Wang D (2007) Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres. Appl Phys A 89:427–430

    Article  CAS  Google Scholar 

  • Yue Y, Gao Z (2000) Synthesis of mesoporous TiO2 with a crystalline framework. Chem Commun 18:1755–1756

    Article  Google Scholar 

  • Zampetti E, Muzyczuk A, Macagnano, Pantalei S, Scalese S, Spinella C, Bearzotti A (2011) Effects of temperature and humidity on electrospun conductive nanofibers based on polyaniline blends. J Nanopart Res 13:6193–6200

    Article  CAS  Google Scholar 

  • Zampetti E, Pantalei S, Muzyczuk A, Bearzotti A, De Cesare F, Spinella C, Macagnano A (2013) A high sensitive NO2 gas sensor based on PEDOT–PSS/TiO2 nanofibres. Sens Actuators B 176:390–398

    Article  CAS  Google Scholar 

  • Zhai T, Fang Z, Liao M, Xu X, Zeng H, Yoshio B, Golberg D (2009) A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9:6504–6529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zampetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zampetti, E., Macagnano, A. & Bearzotti, A. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature. J Nanopart Res 15, 1566 (2013). https://doi.org/10.1007/s11051-013-1566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1566-9

Keywords

Navigation