Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature

  • E. Zampetti
  • A. Macagnano
  • A. Bearzotti
Research Paper


An important drawback of semiconductor gas sensors is their operating temperature that needs the use of heaters. To overcome this problem a prototyping sensor using titania nanofibres (with an average diameter of 50 nm) as sensitive membrane were fabricated by electrospinning directly on the transducer of the sensor. Exploiting the effect of titania photoconductivity, resistance variations upon gas interaction under continuous irradiation of ultra violet light were measured at room temperature. The resistive sensor response was evaluated towards ammonia, nitrogen dioxide and humidity. The sensor exhibited a higher response to ammonia than to nitrogen dioxide, especially for concentrations larger than 100 ppb. For 200 ppb of ammonia and nitrogen dioxide, the responses were ~2.8 and 1.5 %, respectively.


Gas sensor Electrospinning TiO2 Photoconductivity Nanofibres Ammonia 


  1. Bajpai R, Motayed A, Davydov AV, Oleshko VP, Aluri GS, Bertness KA, Rao MV, Zaghloul ME (2012) UV-assisted alcohol sensing using SnO2 functionalized GaN nanowire devices. Sens Actuators B 171–172:499–507CrossRefGoogle Scholar
  2. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154CrossRefGoogle Scholar
  3. Bearzotti A, Macagnano A, Pantalei S, Zampetti E, Venditti I, Fratoddi I, Russo MV (2008) Alcohol vapor sensory properties of nanostructured conjugated polymers. J Phys Condens Matter 20:474207CrossRefGoogle Scholar
  4. Brajsa A, Szaniawska K, Barczynski RJ, Murawski L, Koscielska B, Vomvas A, Pomoni K (2004) The photoconductivity of sol–gel derived TiO2 films. Opt Mater 26:151–153CrossRefGoogle Scholar
  5. Breedon M, Spizzirri P, Taylor M, Du Plessis J, McCulloch D, Zhu J, Yu L, Hu Z, Rix C, Wlodarski W, Kalantar-zadeh K (2010) Synthesis of nanostructured tungsten oxide thin films: a simple, controllable, inexpensive, aqueous sol–gel method. Cryst Growth Des 10:430–439CrossRefGoogle Scholar
  6. Carotta MC, Martinelli G, Crema L, Malagù C, Merli M, Ghiotti G, Traversa E (2001) Nanostructured thick film gas sensors for atmospheric pollutant monitoring: quantitative analysis on field tests. Sens Actuators B 76:336–342CrossRefGoogle Scholar
  7. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  8. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C 6:186–205CrossRefGoogle Scholar
  9. Chen X, Mao SS (2006) Synthesis of titanium dioxide (TiO2) nanomaterials. J Nanosci Nanotechnol 6:906–925CrossRefGoogle Scholar
  10. Chen PC, Shen G, Zhou C (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Trans Nanotechnol 7:668–682Google Scholar
  11. Comini E, Cristalli A, Faglia G, Sberveglieri G (2000) Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sens Actuators B 65:260–263CrossRefGoogle Scholar
  12. Comini E, Faglia G, Sberveglieri G (2001) UV activation of tin oxide thinfilms for NO2 sensing at low temperatures. Sens Actuators B 78:73–77CrossRefGoogle Scholar
  13. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  14. Eppler AM, Ballard IM, Nelson J (2002) Charge transport in porous nanocrystalline titanium dioxide. Phys E 14:197–202CrossRefGoogle Scholar
  15. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21CrossRefGoogle Scholar
  16. Golego N, Studeniki SA, Cocivera M (2000) Effect of oxygen on transient photoconductivity in thin-film NbxTi1-xO2. Phys Rev B 61:8262–8269CrossRefGoogle Scholar
  17. Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457CrossRefGoogle Scholar
  18. Gui Y, Li S, Xu J, Li C (2008) Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature. Microelectron J 39:1120–1125CrossRefGoogle Scholar
  19. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308CrossRefGoogle Scholar
  20. Hirano M, Matsushima K (2006) Effect of niobium on the structure and photoactivity of anatase (TiO2) nanoparticles. J Nanosci Nanotechnol 6:762–770CrossRefGoogle Scholar
  21. Ho W, Yu JC (2006) Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. J Mol Catal A Chem 247:268–274CrossRefGoogle Scholar
  22. Hu J, Pan J, Zhu F, Gong H (2004) Evidence of nitric-oxide-induced surface band bending of indium tin oxide. J Appl Phys 95:6273CrossRefGoogle Scholar
  23. Huang XJ, Choi YK (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671Google Scholar
  24. Lala NL, Jose R, Yusoff MM, Ramakrishna S (2012) Continuous tubular nanofibers of vanadium pentoxide by electrospinning for energy storage devices. J Nanopart Res 14:1201–1210CrossRefGoogle Scholar
  25. Law M, Kind H, Messer B, Kim F, Yang P (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 41:2405–2408CrossRefGoogle Scholar
  26. Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560CrossRefGoogle Scholar
  27. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  28. Lu P, Ding B (2008) Applications of electrospun fibers. Recent Pat Nanotechnol 2:169–182CrossRefGoogle Scholar
  29. Maiyalagan T, Viswanathan B, Varadaraju UV (2006) Electro-oxidation of methanol on TiO2 nanotube supported platinum electrodes. J Nanosci Nanotechnol 6:2067–2071CrossRefGoogle Scholar
  30. Marion EF, Tobias JK, Ulrich S (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–51CrossRefGoogle Scholar
  31. Mo Y, Okawa Y, Tajima M, Nakai T, Yoshiike N, Natukawa K (2001) Micro-machined gas sensor array based on metal film micro-heater. Sens Actuators B 79:175–181CrossRefGoogle Scholar
  32. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  33. Peng L, Xie TF, Yang M, Wang P, Pang S, Wang DJ (2008) Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature. Sens Actuators B 131:660–664CrossRefGoogle Scholar
  34. Peng L, Zhao Q, Wang D, Zhai J, Wang P, Pang S, Xie T (2009) A potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sens Actuators B 136:80–85CrossRefGoogle Scholar
  35. Pomoni K, Vomvas A, Chr Trapalis (2008a) Electrical conductivity and photoconductivity studies of TiO2 sol–gel thin films and the effect of N-doping. J Non Cryst Solids 354:4448–4457CrossRefGoogle Scholar
  36. Pomoni K, Vomvas A, Chr Trapalis (2008b) Dark conductivity and transient photoconductivity of nanocrystalline undoped and N-doped TiO2 sol–gel thin films. Thin Solid Films 516:1271–1278CrossRefGoogle Scholar
  37. Rahmani MB, Keshmiri SH, Yu J, Sadek AZ, Al-Mashat L, Moafi A, Latham K, Li YX, Wlodarski W, Kalantar-zadeh K (2010) Gas sensing properties of thermally evaporated lamellar MoO3. Sens Actuators B 145:13–19CrossRefGoogle Scholar
  38. Ramakrishna S, Fujihara K, Teo WE, Yong T, Zuwei Ma, Ramakrishna R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50CrossRefGoogle Scholar
  39. Sadek AZ, Zheng H, Latham K, Wlodarski W, Kalantar-zadeh K (2009) Anodization of Ti thin film deposited on ITO. Langmuir 25:509–514CrossRefGoogle Scholar
  40. Sawicka KM, Gouma P (2006) Electrospun composite nanofibers for functional applications. J Nanopart Res 8:769–778CrossRefGoogle Scholar
  41. Semancik S, Cox DF (1987) Fundamental characterization of clean and gas-dosed tin oxide. Sens Actuators 12:101–106CrossRefGoogle Scholar
  42. Spannhake J, Schulz O, Helwig A, Krenkow A, Müller G, Doll T (2006) High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials. Sensors 6:405–419CrossRefGoogle Scholar
  43. Stathatos E, Lianos P, Monte FD, Levy D, Tsiourvas D (1997) Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates. Langmuir 13:4295–4300CrossRefGoogle Scholar
  44. Traversa E, Sadaoka Y, Carotta MC, Martinelli G (2000) Environmental monitoring field tests using screen-printed thick-film sensors based on semiconducting oxides. Sens Actuators B 65:181–185CrossRefGoogle Scholar
  45. Traversa E, Di Vona ML, Licoccia S, Sacerdoti M, Carotta MC, Crema L, Martinelli G (2001) Sol–gel processed TiO2-based nano-sized powders for use in thick-film gas sensors for atmospheric pollutant monitoring. J Sol–Gel Sci Technol 22:167–179CrossRefGoogle Scholar
  46. Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuators B 9:338–344CrossRefGoogle Scholar
  47. Venditti I, Bearzotti A, Macagnano A, Russo MV (2007) Enhanced sensitivity of polyphenylacetylene and poly[phenylacetylene-(Co-2-hydroxyethyl methacrylate)] nanobeads to humidity. Sens Lett 5:528–532CrossRefGoogle Scholar
  48. Yang TY, Lin HM, Wei BY, Wu CY, Lin CK (2003) UV enhancement of the gas sensing properties of nano-TiO2. Rev Adv Mater Sci 4: 48–54. ISSN 1605-8127. Accessed 15 Mar 2013Google Scholar
  49. Yang M, Xie TF, Peng L, Zhao Y, Wang D (2007) Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres. Appl Phys A 89:427–430CrossRefGoogle Scholar
  50. Yue Y, Gao Z (2000) Synthesis of mesoporous TiO2 with a crystalline framework. Chem Commun 18:1755–1756CrossRefGoogle Scholar
  51. Zampetti E, Muzyczuk A, Macagnano, Pantalei S, Scalese S, Spinella C, Bearzotti A (2011) Effects of temperature and humidity on electrospun conductive nanofibers based on polyaniline blends. J Nanopart Res 13:6193–6200CrossRefGoogle Scholar
  52. Zampetti E, Pantalei S, Muzyczuk A, Bearzotti A, De Cesare F, Spinella C, Macagnano A (2013) A high sensitive NO2 gas sensor based on PEDOT–PSS/TiO2 nanofibres. Sens Actuators B 176:390–398CrossRefGoogle Scholar
  53. Zhai T, Fang Z, Liao M, Xu X, Zeng H, Yoshio B, Golberg D (2009) A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9:6504–6529CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR IMM)RomeItaly

Personalised recommendations