Skip to main content
Log in

Synthesis of streptavidin-conjugated magnetic nanoparticles for DNA detection

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, we report a fabrication of streptavidin-coated magnetic nanoparticles used for DNA detection. Initially, amino-functionalized Fe3O4 nanoparticles with high saturation magnetization are prepared by a photopolymerization method using allylamine as monomer. It is followed by covalent immobilization of streptavidin onto the particle surface via a two-step reaction using glutaraldehyde as coupling agent. Streptavidin-coated magnetic nanoparticles are characterized and further tested for their ability to capture DNA target after binding biotinylated oligonucleotide probes. The results show that the products (~27.2 nm) have a maximum biotin-binding capacity of 0.71 nmol mg−1 when the immobilization reaction is conducted with a mass ratio of streptavidin to magnetic carriers above 0.2 in phosphate buffered saline (pH 7.4) for 24 h. In addition, highly negative ζ-potential and good magnetic susceptibility of the nanocomposites make them applicable for DNA collection and detection, which is verified by the results from the preliminary application of streptavidin-coated magnetic nanoparticles in DNA detection. Therefore, the magnetic nanoparticles provide a promising approach for rapid collection and detection of gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chaiet L, Wolf FJ (1964) The properties of streptavidin, a biotin binding protein produced by Streptomyces. Arch Biochem Biophys 106:1–5

    Article  CAS  Google Scholar 

  • Dumazet-Bonnamour I, Le Perchec P (2000) Colloidal dispersion of magnetite nanoparticles via in situ preparation with sodium polyoxyalkylene di-phosphonates. Colloids Surf A 173:61–71

    Article  CAS  Google Scholar 

  • Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    Article  CAS  Google Scholar 

  • Fan A, Lau C, Lu J (2005) Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal Chem 77:3238–3242

    Article  CAS  Google Scholar 

  • Fornara A, Johansson P, Petersson K, Gustafsson S, Qin J, Olsson E, Ilver D, Krozer A, Muhammed M, Johansson C (2008) Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett 8:3423–3428

    Article  CAS  Google Scholar 

  • Gao F, Pan BF, Zheng WM, Ao LM, Gu HC (2005) Study of streptavidin coated onto PAMAM dendrimer modified magnetite nanoparticles. J Magn Magn Mater 293:48–54

    Article  CAS  Google Scholar 

  • Gong P, Yu J, Sun H, Hong J, Zhao S, Xu D, Yao S (2006) Preparation and characterization of OH-functionalized magnetic nanogels under UV irradiation. J Appl Polym Sci 101:1283–1290

    Article  CAS  Google Scholar 

  • Gong P, Wu W, Yao S, Tong G, Qiao R, Li L (2011) Photochemical preparation and formation mechanism of amino-functionalized magnetic nanogels. Scientia Sinica Chimica 41:840–849

    Article  Google Scholar 

  • Goon IY, Lai LMH, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21:673–681

    Article  CAS  Google Scholar 

  • Green NM (1990) Avidin and streptavidin. Methods Enzymol 184:51–67

    Article  CAS  Google Scholar 

  • Gu H, Zheng R, Zhang X, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665

    Article  CAS  Google Scholar 

  • Guesdon JL, Ternynck T, Avrameas S (1979) The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27:1131–1139

    Article  CAS  Google Scholar 

  • Guo Z, Bai S, Sun Y (2003) Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme Microb Tech 32:776–782

    Article  CAS  Google Scholar 

  • Hong J, Gong P, Xu D, Dong L, Yao S (2007a) Stabilization of α-chymotrypsin by covalent immobilization on amine-functionalized superpara-magnetic nanogel. J Biotechnol 128:597–605

    Article  CAS  Google Scholar 

  • Hong J, Xu D, Gong P, Ma H, Dong L, Yao S (2007b) Conjugation of enzyme on superparamagnetic nanogels covered with carboxyl groups. J Chromatogr B 850:499–506

    Article  CAS  Google Scholar 

  • Hu F, Wei L, Zhou Z, Ran Y, Li Z, Gao M (2006) Preparations of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18:2553–2556

    Article  CAS  Google Scholar 

  • Kaushik A, Solanki PR, Ansari AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem Eng J 46:132–140

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Li L, Yang Y, Ding J, Xue J (2010) Synthesis of magnetite nanooctahedra and their magnetic field-Induced two-/three-dimensional superstructure. Chem Mater 22:3183–3191

    Article  CAS  Google Scholar 

  • Lin PC, Chou PH, Chen SH, Liao HK, Wang KY, Chen YJ, Lin CC (2006) Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2:485–489

    Article  CAS  Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896

    Article  CAS  Google Scholar 

  • Liu HL, Sonn CH, Wu JH, Lee KM, Kim YK (2008a) Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4 + lymphocytes. Biomaterials 29:4003–4011

    Article  CAS  Google Scholar 

  • Liu X, Ni X, Wang J, Yu X (2008b) A novel route to photoluminescent, water-soluble Mn-doped ZnS quantum dots via photopolymerization initiated by the quantum dots. Nanotechnology 19:485602

    Article  Google Scholar 

  • Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45:2231–2235

    Article  CAS  Google Scholar 

  • Nilsson P, Persson B, Uhlén M, Nygren P-Å (1995) Real-time monitoring of DNA manipulations using biosensor technology. Anal Biochem 224:400–408

    Article  CAS  Google Scholar 

  • Parker CA (1959) Raman spectra in spectrofluorimetry. Analyst 84:446–453

    Article  CAS  Google Scholar 

  • Pita M, Abad JM, Vaz-Dominguez C, Briones C, Mateo-Martí E, Martín-Gago JA, Morales Mdel P, Fernández VM (2008) Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J Colloid Interface Sci 321:484–492

    Article  CAS  Google Scholar 

  • Poole LR, Esaias WE (1982) Water Raman normalization of airborne laser fluorosensor measurements: a computer model study. Appl Opt 21:3756–3761

    Article  CAS  Google Scholar 

  • Qiao R, Zhang XL, Qiu R, Kim JC, Kang YS (2007) Preparation of magnetic hybrid copolymer–cobalt hierarchical hollow spheres by localized Ostwald ripening. Chem Mater 19:6485–6491

    Article  CAS  Google Scholar 

  • Qu SC, Yang HB, Ren DW, Kan SH, Zou GT, Li DM, Li MH (1999) Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci 215:190–192

    Article  CAS  Google Scholar 

  • Shang H, Chang WS, Kan S, Majetich SA, Lee GU (2006) Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization. Langmuir 22:2516–2522

    Article  CAS  Google Scholar 

  • Shen TT, Bogdanov A Jr, Bogdanova A, Poss K, Brady TJ, Weissleder R (1996) Magnetically labeled secretin retains receptor affinity to pancreas acinar cells. Bioconjug Chem 7:311–316

    Article  CAS  Google Scholar 

  • Shen JM, Guan XM, Liu XY, Lan JF, Cheng T, Zhang HX (2012) Luminescent/magnetic hybrid nanoparticles with folate-conjugated peptide composites for tumor-targeted drug delivery. Bioconjug Chem 23:1010–1021

    Article  CAS  Google Scholar 

  • Stroyuk AL, Granchak VM, Korzhak AV, Kuchmii S Ya (2004) Photoinitiation of buthylmethacrylate polymerization by colloidal semiconductor nanoparticles. J Photochem Photobiol A 162:339–351

    Article  CAS  Google Scholar 

  • Tang D, Yuan R, Chai Y (2008) Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem 80:1582–1588

    Article  CAS  Google Scholar 

  • Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    Article  CAS  Google Scholar 

  • Tsai HY, Hsu FH, Lin YP, Bor Fuh C (2006) Separation method based on affinity reaction between magnetic and nonmagnetic particles for the analysis of particles and biomolecules. J Chromatogr A 1130:227–231

    Article  CAS  Google Scholar 

  • Xu H, Tong N, Cui L, Lu Y, Gu H (2007a) Preparation of hydrophilic magnetic nanospheres with high saturation magnetization. J Magn Magn Mater 311:125–130

    Article  CAS  Google Scholar 

  • Xu Z, Hou Y, Sun S (2007b) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699

    Article  CAS  Google Scholar 

  • Yang J, Lim EK, Lee HJ, Park J, Lee SC, Lee K, Yoon HG, Suh JS, Huh YM, Haam S (2008) Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials 29:2548–2555

    Article  CAS  Google Scholar 

  • Zhao X, Tapec-Dytioco R, Wang K, Tan W (2003) Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal Chem 75:3476–3483

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China (Grant No. 21201151), Natural Scientific Foundation of Zhejiang Province (No. Y4100074, Y4090636, and Y4110025), Sci-Tech Research Projects of Jinhua (No. 2010-1-120 and 2010-1-069), and SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, P., Peng, Z., Wang, Y. et al. Synthesis of streptavidin-conjugated magnetic nanoparticles for DNA detection. J Nanopart Res 15, 1558 (2013). https://doi.org/10.1007/s11051-013-1558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1558-9

Keywords

Navigation