Skip to main content
Log in

Element-specific study of the coupled magneto-structural and magneto-electronic properties of CoNi nanoarrays

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The magneto-structural (MS) and magneto-electronic (ME) effects, as well as their coupling relationship, were investigated in electroless-plated (EL) Co0.5Ni0.5 arrays treated by post N2 annealing and in situ field plating. Separately and combined, these two treatments have been widely employed to improve the properties of magnetic nanostructures. This work aimed to discriminate between treatments with respect to electronic and structural properties, and magnetic degrees of freedom of Co0.5Ni0.5 nanostructures. The field-plated sample exhibited a strong MS–ME coupling due to magneto-crystalline anisotropy (MCA), arising from a FCC (111) preferred orientation with lattice planes stacking orthogonally to the long axial direction of the arrays. A large coercivity was observed in this structure, arising from high magnetic stability. X-ray magnetic circular dichroism revealed that magnetization was enhanced primarily by Co magnetism, while the field-plated sample underwent a MS/ME transition with corresponding increase of the plating field. Conversely, the heat-treated sample comprised isotropically oriented nanocrystals approximately 20 ± 3 nm in diameter, coated with an oxidation layer (approximately 5 ± 2 nm thick). The absence of MCA in these samples ensured a weak MS–ME coupling. Although the Ni magnetization of heat-treated samples remained close to that of the field-plated sample, the Co constituent exhibited CoO and Co3O4 phases in addition to the metallic state. By contrast, the Co constituent of the field-plated sample was mainly metallic. The lack of MCA, combined with a complex Co magnetic state, appears responsible for the divergent macroscopic magnetic behaviors of the heat-treated and the field-plated samples. By isolating changes in local magnetic moments of Ni and Co, we gained a fundamental understanding of the effects of post-N2 annealing and field plating on CoNi. Such knowledge may assist researches in improving the magnetic properties of bimetallic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blanchard PE, Grosvenor AP, Cavell RG, Mar A (2008) X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni). Chem Mater 20:7081–7088

    Google Scholar 

  • Chen CT, Sette F, Ma Y, Modesti S (1990) Soft-X-ray magnetic circular dichroism at the L2, 3 edges of nickel. Phys Rev B 42:7262–7265

    Article  CAS  Google Scholar 

  • Chen CT, Idzerda YU, Lin HJ, Smith NV, Meigs F, Chaban E, Ho GH, Pellegrin E, Sette F (1995) Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75:152–155

    Article  CAS  Google Scholar 

  • Gálvez N, Valero E, Ceolin M, Trasobares S, López-Haro M, Calvino JJ, Domínguez-Vera JM (2010) A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles. Inorg Chem 49:1705–1711

    Article  Google Scholar 

  • Glaubitz B, Buschhorn S, Brüssing F, Abrudan R, Zabel H (2011) Development of magnetic moments in Fe1−x Ni x -alloys. J Phys 23:254210

    Google Scholar 

  • Golosovsky IV, Mirebeau I, André G, Tovar M, Tobbens DM, Kurdyukov DA, Kumzerov YA (2006) Magnetic phase transition in a nanostructured antiferromagnet CoO embedded in porous glass. Phys Solid State 48:2130–2133

    Article  CAS  Google Scholar 

  • Gómez E, Pané S, Vallés E (2005) Magnetic composites CoNi–barium ferrite prepared by electrodeposition. Electrochem Commun 7:1225–1231

    Article  Google Scholar 

  • Hsu HC, Lo CC, Tseng YC (2012) Competing magnetic interactions and interfacial frozen-spins in Ni–NiO core–shell nano-rods. J Appl Phys 111:063919

    Article  Google Scholar 

  • Huang CC, Lo CC, Tseng YC, Liu CM, Chen C (2011) Magnetostructural phase transition in electroless-plated Ni nanoarrays. J Appl Phys 109:113905

    Article  Google Scholar 

  • Imperia P, Schmitz D, Maletta H, Sobal NS, Giersig M (2005) Effect of Ar+ and H+ etching on the magnetic properties of Co/CoO core–shell nanoparticles. Phys Rev B 72:014448

    Article  Google Scholar 

  • Ito N, Michels A, Kohlbrecher J, Garitaonandia JS, Suzuki K, Cashion JD (2007) Effect of magnetic field annealing on the soft magnetic properties of nanocrystalline materials. J Magn Magn Mater 316:458–461

    Article  CAS  Google Scholar 

  • Jiménez-Villacorta F, Prieto C, Huttel Y, Telling ND, van der Laan G (2011) X-ray magnetic circular dichroism study of the blocking process in nanostructurediron-iron oxide core–shell systems. Phys Rev B 84:172404

    Article  Google Scholar 

  • Kuepper K, Benoit DM, Wiedwald U, Mögele F, Meyering A, Neumann M, Kappler JP, Joly L, Weidle S, Rieger B, Ziemann P (2011) Precise chemical, electronic, and magnetic structure of binuclear complexes studied by means of X-ray spectroscopies and theoretical methods. J Phys Chem C 115:25030–25039

    Article  CAS  Google Scholar 

  • Kumah DP, Cebollada A, Clavero C, García-Martín JM, Skuza JR, Lukaszew RA, Clarke R (2007) Optimizing the planar structure of (111) Au/Co/Au trilayers. J Phys D 40:2699–2704

    Article  CAS  Google Scholar 

  • Lee YJ, de Jong MP, Jansen R (2010) Magnetism and heterogeneity of Co in anatase Co:TiO2 magnetic semiconductor. Appl Phys Lett 96:082506

    Article  Google Scholar 

  • Liot F, Abrikosov IA (2009) Local magnetovolume effects in Fe65Ni35 alloys. Phys Rev B 79:014202

    Article  Google Scholar 

  • Liu CM, Tseng YC, Chen C, Hsu MC, Chao TY, Cheng YT (2009) Superparamagnetic and ferromagnetic Ni nanorod arrays fabricated on Si substrates using electroless deposition. Nanotechnology 20:415703

    Article  Google Scholar 

  • Lo CC, Huang CC, Liu CM, Chen C, Kuo CY, Lin HJ, Tseng YC (2011) Magnetic properties of electroless-deposited Ni and Ni–NiO core–shell nano-arrays. J Magn Magn Mater 323:1950–1953

    Article  CAS  Google Scholar 

  • Mandal S, Banerjee S, Menon KSR (2009) Core–shell model of the vacancy concentration and magnetic behavior for antiferromagnetic nanoparticle. Phys Rev B 80:214420

    Article  Google Scholar 

  • Marín P, López M, Vlad A, Hernando A, Ruiz-González ML, González-Calbet JM (2006) Magnetic field driving custom assembly in (FeCo) nanocrystals. Appl Phys Lett 89:033508

    Article  Google Scholar 

  • Mousavand T, Naka T, Sato K, Ohara S, Umetsu M, Takami S, Nakane T, Matsushita A, Adschiri T (2009) Crystal size and magnetic field effects in Co3O4 antiferromagnetic nanocrystals. Phys Rev B 79:144411

    Article  Google Scholar 

  • Mulders AM, Loosvelt H, Fraile Rodríguez A, Popova E, Konishi T, Temst K, Karis O, Arvanitis D, Van Haesendonck C (2009) On the interface magnetism of thin oxidized Co films: orbital and spin moments. J Phys 21:124211

    CAS  Google Scholar 

  • Niu H, Chen Q, Ning M, Jia Y, Wang X (2004) Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J Phys Chem B 108:3996–3999

    Article  CAS  Google Scholar 

  • Ohtake M, Nukaga Y, Sato Y, Kirino F, Futamoto M (2009) Epitaxial growth of fcc-Co x Ni100−x thin films on MgO(110) single-crystal substrates. J Appl Phys 106:123921

    Article  Google Scholar 

  • Pané S, Gómez E, García-Amorós J, Velasco D, Vallés E (2007) First stages of barium ferrite microparticles entrapment in the electrodeposition of CoNi films. J Electroanal Chem 604:41–47

    Article  Google Scholar 

  • Press MR, Khanna SN, Jena P (1987) Electronic structure, magnetic behavior, and stability of Ni-P. Phys Rev B 36:5446–5453

    Article  CAS  Google Scholar 

  • Qin DH, Wang CW, Sun QY, Li HL (2002) The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays. Appl Phys A 74:761–765

    Article  CAS  Google Scholar 

  • Sankara N, Selvakumar S, Stephen A (2003) Electroless Ni–Co–P ternary alloy deposits: preparation and characteristics. Surf Coat Technol 172:298–307

    Article  Google Scholar 

  • Shamaila S, Sharif R, Chen JY, Liu HR, Han XF (2009) Magnetic field annealing dependent magnetic properties of Co90Pt10 nanowire arrays. J Magn Magn Mater 321:3984–3989

    Article  CAS  Google Scholar 

  • Singh AP, Kumar R, Thakur P, Brookes NB, Chae KH, Choi WK (2009) NEXAFS and XMCD studies of single-phase Co doped ZnO thin films. J Phys 21:185005

    Google Scholar 

  • Spaldin N (2003) Magnetic materials: fundamentals and device applications, Chap 10. Cambridge University Press, Cambridge, p 124

    Google Scholar 

  • Tang XT, Wang GC, Shima M (2007) Magnetic layer thickness dependence of magnetization reversal in electrodeposited CoNi/Cu multilayer nanowires. J Magn Magn Mater 309:188–196

    Article  CAS  Google Scholar 

  • Ung D, Viau C, Ricolleau C, Warmont F, Gredin P, Fiévet F (2005) CoNi nanowires synthesized by heterogeneous nucleation in liquid polyol. Adv Mater 17:338–344

    Article  CAS  Google Scholar 

  • Wu M, Liu G, Li M, Dai P, Ma Y, Zhang L (2010) Magnetic field-assisted solvothermal assembly of one-dimensional nanostructures of Ni–Co alloy nanoparticles. J Alloy Compd 491:689–693

    Article  CAS  Google Scholar 

  • http://www.siliconfareast.com/ox_potential.htm

  • Yamauchi Y, Yokoshima T, Momma T, Osaka T, Kuroda K (2004) Fabrication of magnetic mesostructured nickel–cobalt alloys from lyotropic liquid crystalline media by electroless deposition. J Mater Chem 14:2935–2940

    Article  CAS  Google Scholar 

  • Yang CY, Huang CC, Tseng YC, Liu CM, Chen C, Lin HJ (2011) Coupled microstructural and magnetic transition in Co-doped Ni nanoarrays. J Appl Phys 110:073913

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the great help of TEM analyses from Mr. Cheng-Yu Hsieh. This work is supported by the National Science Council of Taiwan, under Grant No. NSC 98-2112-M-009 022-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Chieh Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CY., Tseng, YC. & Lin, HJ. Element-specific study of the coupled magneto-structural and magneto-electronic properties of CoNi nanoarrays. J Nanopart Res 15, 1542 (2013). https://doi.org/10.1007/s11051-013-1542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1542-4

Keywords

Navigation