Chromium-based rings within the DFT and Falicov–Kimball model approach

  • B. Brzostowski
  • R. Lemański
  • T. Ślusarski
  • D. Tomecka
  • G. Kamieniarz
Research Paper
Part of the following topical collections:
  1. Nanostructured Materials 2012. Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos


We present a comprehensive study of electronic and magnetic properties of octometallic homo- and heteronuclear chromium-based molecular rings Cr7MF8(O2CH)16 (in short Cr7M, M = Cr, Cd and Ni) by the first-principle density functional theory (DFT) and pseudopotential ideas. Their radii are around 1 nm. For each Cr7M, the antiferromagnetic configuration corresponds to the ground state and the ferromagnetic (high spin HS) configuration to the highest energy state. Using the broken symmetry (BS) approach, the differences between the total energies of the HS configuration and all the nonequivalent low spin configurations with s = ±3/2 are calculated and exploited to extract the coupling parameters J between the magnetic ions. Magnetic moments are found to be well localised on the Cr and Ni centres, although the localisation of spin density on Ni is weaker. Having calculated the excess energies for an unprecedented number of configurations, a family of the Ising-like models with the nearest- and the next-nearest-neighbour interactions has been considered. For each Cr7M, the values of the interaction parameters found within the unprojected method are coherent, despite the overdetermination problem and demonstrate that the next-nearest-neighbour couplings are negligible. The DFT estimates of the nearest-neighbour coupling calculated are overestimated and the relation J Cr–Cr/J Cr–Ni < 1 is not fulfilled. However, the improvement in these estimates has been achieved with respect to earlier calculations. Relying on the DFT results, the molecule is considered as a system of localised spins (or ions) S = ±3/2 and the idea to describe their interactions with itinerant electrons by the Falicov–Kimball (FK) model is suggested. In our approach, the effective magnetic interactions between ions are generated by local (on-site) Hund couplings between the ions and itinerant electrons. We demonstrate that the BS state energies obtained within DFT for Cr7M can be successfully represented by the FK model with a unique set of parameters.


Molecular rings DFT approach Falicov–Kimball model 



We are thankful for access to the platforms of the Supercomputing and Networking Center in Poznań and to the HPC resources offered within DECI-8 call by the PRACE-2IP programme under Grant No. RI-283493.


  1. Baker ML, Guidi T, Carretta S, Ollivier J, Mutka H, Gudel HU, Timco GA, McInnes EJL, Amoretti G, Winpenny REP, Santini P (2012b) Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering. Nat Phys 8:906–911CrossRefGoogle Scholar
  2. Baker ML, Timco GA, Piligkos S, Mathieson JS, Mutka H, Tuna F, Kozłowski P, Antkowiak M, Guidi T, Gupta T, Rath H, Woolfson RJ, Kamieniarz G, Pritchard RG, Weihe H, Cronin L, Rajaraman G, Collison D, McInnes EJL, Winpenny REP (2012a) A classification of spin frustration in molecular magnets from a physical study of large odd-numbered-metal, odd electron rings. Proc Natl Acad Sci 109:19113–19118CrossRefGoogle Scholar
  3. Bellini V, Affronte M (2010) A density-functional study of heterometallic Cr-based molecular rings. J Phys Chem B 114:14797–14806CrossRefGoogle Scholar
  4. Bellini V, Olivieri A, Manghi F (2006) Density-functional study of the Cr8 antiferromagnetic ring. Phys Rev B 73:184431CrossRefGoogle Scholar
  5. Bencini A, Totti F (2005) DFT description of the magnetic structure of polynuclear transition-metal clusters: the complexes [{Cu(bpca)2(H2O)2}{Cu(NO3)2}2], (bpca = Bis(2-pyridylcarbonyl)amine), and [Cu(DBSQ)(C2H5O)]2, (DBSQ = 3,5-di-tert-butyl-semiquinonato). Int J Quantum Chem 101:819–825CrossRefGoogle Scholar
  6. Bencini A, Totti F (2009) A few comments on the application of density functional theory to the calculation of the magnetic structure of oligo-nuclear transition metal clusters. J Chem Theory Comput 5:144–154CrossRefGoogle Scholar
  7. Brzostowski B, Ślusarski T, Kamieniarz G (2012) DFT study of octanuclear molecular chromium-based ring using new pseudopotential parameters. Acta Phys Pol A 121:1115–1117Google Scholar
  8. Caciuffo R, Guidi T, Amoretti G, Carretta S, Liviotti E, Santini P, Mondelli C, Timco G, Muryn CA, Winpenny REP (2005) Spin dynamics of heterometallic Cr7M wheels (M = Mn, Zn, Ni) probed by inelastic neutron scattering. Phys Rev B 71:174407CrossRefGoogle Scholar
  9. Carretta S, van Slageren J, Guidi T, Liviotti E, Mondelli C, Rovai D, Cornia A, Dearden AL, Carsughi F, Affronte M, Frost CD, Winpenny REP, Gatteschi D, Amoretti G, Caciuffo R (2003) Microscopic spin Hamiltonian of a Cr8 antiferromagnetic ring from inelastic neutron scattering. Phys Rev B 67:094405CrossRefGoogle Scholar
  10. Čenčariková H, Farkašovský P, Tomašovičková N, Žonda M (2008) Charge and magnetic order in the spin-one-half Falicov–Kimball model with Hund coupling in two dimensions. Phys Stat Sol (b) 245:2593–2598CrossRefGoogle Scholar
  11. Farkašovský P, Čenčariková H (2005) Ground states of the generalized Falicov–Kimball model in one and two dimensions. Eur Phys J B 47:517–526CrossRefGoogle Scholar
  12. Fortunelli A, Painelli A (1997) Ab initio estimate of Hubbard model parameters: a simple procedure applied to BEDT-TTF salts. Phys Rev B 55:16088–16095CrossRefGoogle Scholar
  13. Furukawa Y, Kiuchi K, Kumagai Ki, Ajiro Y, Narumi Y, Iwaki M, Kindo K, Bianchi A, Carretta S, Santini P, Borsa F, Timco GA, Winpenny REP (2009) Evidence of spin singlet ground state in the frustrated antiferromagnetic ring Cr8Ni. Phys Rev B 79:134416CrossRefGoogle Scholar
  14. Gatteschi D, Caneschi A, Pardi L, Sessoli R (1994) Large clusters of metal ions, the transition from molecular to bulk magnets. Science 265:1054–1058CrossRefGoogle Scholar
  15. Kamieniarz G, Kozłowski P, Musiał G, Florek W, Antkowiak M, Haglauer M, D’Auria AC, Esposito F (2008) Phenomenological modeling of molecular-based rings beyond the strong exchange limit: bond alternation and single-ion anisotropy effects. Inorg Chim Acta 361:3690–3696CrossRefGoogle Scholar
  16. Kamieniarz G, Kozłowski P, Antkowiak M, Sobczak P, Ślusarski T, Tomecka D, Barasiński A, Brzostowski B, Drzewiński A, Bieńko A, Mroziński J (2012) Anisotropy, geometric structure and frustration effects in molecule-based nanomagnets. Acta Phys Pol A 121:992–998Google Scholar
  17. Kozłowski P, Kamieniarz G, Antkowiak M, Tuna F, Timco GA, Winpenny REP (2009) Phenomenological modeling of the anisotropic molecular-based ring Cr7Cd. Polyhedron 28:1852–1855CrossRefGoogle Scholar
  18. Larsen FK, McInnes EJL, Mkami HE, Overgaard J, Piligkos S, Rajaraman G, Rentschler E, Smith AA, Smith GM, Boote V, Jennings M, Timco GA, Winpenny REP (2003) Synthesis and characterization of heterometallic {Cr7M} wheels. Angew Chem Int Ed 42:101–105CrossRefGoogle Scholar
  19. Lemański R (2005) Model of charge and magnetic order formation in itinerant electron systems. Phys Rev B 71:035107CrossRefGoogle Scholar
  20. Lemański R, Wrzodak J (2008) Ground-state phase diagrams of the generalized Falicov–Kimball model with Hund coupling. Phys Rev B 78:085118CrossRefGoogle Scholar
  21. Louie SG, Froyen S, Cohen ML (1982) Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys Rev B 26:1738–1742CrossRefGoogle Scholar
  22. Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico A, Arrio M, Cornia A, Gatteschi D, Sessoli R (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197CrossRefGoogle Scholar
  23. Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio MA, Otero E, Joly L, Cezar JC, Cornia A, Sessoli R (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468:417–422CrossRefGoogle Scholar
  24. Micotti E, Furukawa Y, Kumagai K, Carretta S, Lascialfari A, Borsa F, Timco GA, Winpenny REP (2006) Local spin moment distribution in antiferromagnetic molecular rings probed by NMR. Phys Rev Lett 97:267204CrossRefGoogle Scholar
  25. Nishino M, Yamanaka S, Yoshioka Y, Yamaguchi K (1997) Theoretical approaches to direct exchange couplings between divalent chromium ions in naked dimers, tetramers, and clusters. J Phys Chem A 101:705–712CrossRefGoogle Scholar
  26. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B (Rapid Commun) 53:R10441–R10444CrossRefGoogle Scholar
  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  28. Piligkos S, Weihe H, Bill E, Neese F, El Mkami H, Smith GM, Collison D, Rajaraman G, Timco GA, Winpenny REP, McInnes EJL (2009) EPR spectroscopy of a family of Cr7IIIMII (M = Cd, Zn, Mn, Ni), wheels”: studies of isostructural compounds with different spin ground states. Chem Eur J 15:3152–3167CrossRefGoogle Scholar
  29. Rudra I, Wu Q, Van Voorhis T (2006) Accurate magnetic exchange couplings in transition-metal complexes from constrained density-functional theory. J Chem Phys 124:024103CrossRefGoogle Scholar
  30. Rudra I, Wu Q, Van Voorhis T (2007) Predicting exchange coupling constants in frustrated molecular magnets using density functional theory. Inorg Chem 46:10539–10548CrossRefGoogle Scholar
  31. Ruiz E, Cano J, Alvarez S, Alemany P (1999) Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes. J Comput Chem 20:1391–1400CrossRefGoogle Scholar
  32. Ruiz E, Rodríguez-Fortea A, Cano J, Alvarez S, Alemany P (2003) About the calculation of exchange coupling constants in polynuclear transition metal complexes. J Comput Chem 24:982–989CrossRefGoogle Scholar
  33. van Slageren J, Sessoli R, Gatteschi D, Smith AA, Helliwell M, Winpenny REP, Cornia A, Barra AL, Jansen AGM, Rentschler E, Timco GA (2002) Magnetic anisotropy of the antiferromagnetic ring [Cr8F8Piv16]. Chem Eur J 8:277–285CrossRefGoogle Scholar
  34. Ślusarski T, Brzostowski B, Tomecka D, Kamieniarz G (2010) Application of the package Siesta to linear models of a molecular chromium-based ring. Acta Phys Pol A 118:967–968Google Scholar
  35. Ślusarski T, Brzostowski B, Tomecka D, Kamieniarz G (2011) Electronic structure and magnetic properties of a molecular octanuclear chromium-based ring. J Nanosci Nanotechnol 11:9080–9087CrossRefGoogle Scholar
  36. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The siesta method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  37. Timco GA, Carretta S, Troiani F, Tuna F, Pritchard RJ, Muryn CA, McInnes EJL, Ghirri A, Candini A, Santini P, Amoretti G, Affronte M, Winpenny REP (2009) Engineering the coupling between molecular spin qubits by coordination chemistry. Nat Nanotechnol 4:173–178CrossRefGoogle Scholar
  38. Tomecka DM, Bellini V, Troiani F, Manghi F, Kamieniarz G, Affronte M (2008) Ab initio study on a chain model of the Cr8 molecular magnet. Phys Rev B 77:224401CrossRefGoogle Scholar
  39. Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G, Winpenny REP (2005) Molecular engineering of antiferromagnetic rings for quantum computation. Phys Rev Lett 94:207208CrossRefGoogle Scholar
  40. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  41. Werner P, Gull E, Millis AJ (2009) Metal–insulator phase diagram and orbital selectivity in three-orbital models with rotationally invariant Hund coupling. Phys Rev B 79:115119CrossRefGoogle Scholar
  42. Wrzodak J, Lemański R (2010a) Energy spectrum analysis and finite temperature properties of the Falicov–Kimball model with Hund coupling at half filling. Phys Rev B 82:195118CrossRefGoogle Scholar
  43. Wrzodak J, Lemański R (2010b) One-electron excitations vs. collective excitations in the 1D Falicov–Kimball model with Hund coupling at half filling. Acta Phys Pol A 118:366–368Google Scholar
  44. Zein S, Kalhor MP, Chibotaru LF, Chermette H (2009) Density functional estimations of Heisenberg exchange constants in oligonuclear magnetic compounds: assessment of density functional theory versus ab initio. J Chem Phys 131:224316CrossRefGoogle Scholar
  45. Žonda M (2007) Magnetic phase diagrams of the generalized spin-one-half Falicov–Kimball model. Mod Phys Lett B 21:467–474CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. Brzostowski
    • 1
  • R. Lemański
    • 2
  • T. Ślusarski
    • 3
  • D. Tomecka
    • 3
  • G. Kamieniarz
    • 3
  1. 1.Institute of PhysicsUniversity of Zielona GóraZielona GóraPoland
  2. 2.Institute of Low Temp. & Struct. ResearchPolish Academy of SciencesWrocławPoland
  3. 3.Faculty of PhysicsA. Mickiewicz UniversityPoznańPoland

Personalised recommendations