A copper cluster protected with phenylethanethiol

  • Anindya Ganguly
  • Indranath Chakraborty
  • Thumu Udayabhaskararao
  • Thalappil Pradeep
Brief Communication


A copper cluster protected with 2-phenylethanethiol (PET) exhibiting distinct optical features in UV/Vis spectroscopy is reported. Matrix-assisted laser desorption ionisation mass spectrometry of the cluster shows a well-defined molecular ion peak at m/z 5,800, assigned to ~Cu38(PET)25. Fragmented ions from the cluster show the expected isotope patterns in electrospray ionisation mass spectrometry. The as-synthesized cluster was well-characterised using other tools as well. Clusters undergo decomposition in about 2 h after synthesis as a metallic few-atom core of copper is highly unstable. The products of decomposition were also characterised.


Atomically precise Cu cluster 2-Phenylethanethiol MALDI MS ESI MS 



We thank the Department of Science and Technology, Government of India for financial support. Thanks are due to SAIF, IIT Madras for the PXRD data.

Supplementary material

11051_2013_1522_MOESM1_ESM.doc (3.5 mb)
Supplementary material 1 (DOC 3567 kb)


  1. Ai Z, Zhang L, Lee S, Ho W (2009) Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity. J Phys Chem C 113(49):20896. doi: 10.1021/jp9083647 CrossRefGoogle Scholar
  2. Bakshi MS, Possmayer F, Petersen NO (2007) Simultaneous synthesis of Au and Cu nanoparticles in pseudo-core-shell type arrangement facilitated by DMPG and 12-6-12 capping agents. Chem Mater 19(6):1257. doi: 10.1021/cm062771t CrossRefGoogle Scholar
  3. Bootharaju MS, Pradeep T (2011) Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir 27(13):8134. doi: 10.1021/la200947c CrossRefGoogle Scholar
  4. Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130(27):8608. doi: 10.1021/ja8005379 CrossRefGoogle Scholar
  5. Chakraborty I, Govindarajan A, Erusappan J, Ghosh A, Pradeep T, Yoon B, Whetten RL, Landman U (2012a) The superstable 25 kDa monolayer protected silver nanoparticle: measurements and interpretation as an icosahedral Ag152(SCH2CH2Ph)60 cluster. Nano Lett 12(11):5861–5866. doi: 10.1021/nl303220x CrossRefGoogle Scholar
  6. Chakraborty I, Udayabhaskararao T, Pradeep T (2012b) High temperature nucleation and growth of glutathione protected ~Ag75 clusters. Chem Commun 48(54):6788CrossRefGoogle Scholar
  7. Dass A (2009) Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc 131(33):11666. doi: 10.1021/ja904713f CrossRefGoogle Scholar
  8. Dhanalakshmi L, Udayabhaskararao T, Pradeep T (2012) Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters. Chem Commun 48(6):859. doi: 10.1039/c1cc15604g CrossRefGoogle Scholar
  9. Espinet P, Lequerica MC, Martin-Alvarez JM (1982) Synthesis, structural characterization and mesogenic behavior of copper(I) n-alkylthiolates. Chem Eur J 5(7):1982–1986. doi: 10.1002/(sici)1521-3765(19990702)5:7 CrossRefGoogle Scholar
  10. Ghijsen J, Tjeng LH, Van EJ, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of cuprous and cupric oxides. Phys Rev B 38(16-A):11322CrossRefGoogle Scholar
  11. Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255(5):2730. doi: 10.1016/j.apsusc.2008.08.110 CrossRefGoogle Scholar
  12. Goswami N, Giri A, Bootharaju MS, Xavier PL, Pradeep T, Pal SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83(24):9676. doi: 10.1021/ac202610e CrossRefGoogle Scholar
  13. Guo J, Kumar S, Bolan M, Desireddy A, Bigioni TP, Griffith WP (2012) Mass spectrometric identification of silver nanoparticles: the case of Ag32(SG)19. Anal Chem 84(12):5304. doi: 10.1021/ac300536j CrossRefGoogle Scholar
  14. Habeeb MMA, Pradeep T (2011) Au25@SiO2: quantum clusters of gold embedded in silica. Small 7(2):204CrossRefGoogle Scholar
  15. Haruta M (2005) Catalysis: gold rush. Nature 437(7062):1098. doi: 10.1038/4371098a CrossRefGoogle Scholar
  16. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 a resolution. Science 318(5849):430CrossRefGoogle Scholar
  17. Jia X, Li J, Han L, Ren J, Yang X, Wang E (2012) DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 6(4):3311. doi: 10.1021/nn3002455 CrossRefGoogle Scholar
  18. Knoppe S, Dharmaratne AC, Schreiner E, Dass A, Burgi T (2010) Ligand exchange reactions on Au38 and Au40 clusters: a combined circular dichroism and mass spectrometry study. J Am Chem Soc 132(47):16783. doi: 10.1021/ja104641x CrossRefGoogle Scholar
  19. Lu Y, Chen W (2012) Sub-nanometer sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41(9):3594. doi: 10.1039/c2cs15325d CrossRefGoogle Scholar
  20. Mathew A, Sajanlal PR, Pradeep T (2011) A fifteen atom silver cluster confined in bovine serum albumin. J Mater Chem 21(30):11205. doi: 10.1039/c1jm11452b CrossRefGoogle Scholar
  21. Mathew A, Sajanlal PR, Pradeep T (2012) Selective visual detection of TNT at the sub-zeptomole level. Angew Chem Int Ed 51(38):9596–9600. doi: 10.1002/anie.201203810 CrossRefGoogle Scholar
  22. Muhammed MAH, Verma PK, Pal SK, Kumar RCA, Paul S, Omkumar RV, Pradeep T (2009) Bright, NIR-emitting Au23 from Au25: characterization and applications including biolabeling. Chem Eur J 15(39):10110. doi: 10.1002/chem.200901425 CrossRefGoogle Scholar
  23. Nishida N, Miyashita A, Hashimoto N, Murayama H, Tanaka H (2011) Regenerative synthesis of copper nanoparticles by photoirradiation. Eur Phys J D 63(2):307. doi: 10.1140/epjd/e2011-10515-8 CrossRefGoogle Scholar
  24. Parikh AN, Gillmor SD, Beers JD, Beardmore KM, Cutts RW, Swanson BI (1999) Characterization of chain molecular assemblies in long-chain, layered silver thiolates: a joint infrared spectroscopy and X-ray diffraction study. J Phys Chem B 103(15):2850. doi: 10.1021/jp983938b CrossRefGoogle Scholar
  25. Pei Y, Gao Y, Zeng XC (2008) Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J Am Chem Soc 130(25):7830. doi: 10.1021/ja802975b CrossRefGoogle Scholar
  26. Prucek R, Kvitek L, Panacek A, Vancurova L, Soukupova J, Jancik D, Zboril R (2009) Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency. J Mater Chem 19(44):8463. doi: 10.1039/b913561h CrossRefGoogle Scholar
  27. Rao TUB, Pradeep T (2010) Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed 49(23):3925. doi: 10.1002/anie.200907120 CrossRefGoogle Scholar
  28. Rao TUB, Nataraju B, Pradeep T (2010) Ag9 quantum cluster through a solid-state route. J Am Chem Soc 132(46):16304. doi: 10.1021/ja105495n CrossRefGoogle Scholar
  29. Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M (2010) Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21(5):055103CrossRefGoogle Scholar
  30. Salorinne K, Chen X, Troff RW, Nissinen M, Haekkinen H (2012) One-pot synthesis and characterization of subnanometre-size benzotriazolate protected copper clusters. Nanoscale 4(14):4095. doi: 10.1039/c2nr30444a CrossRefGoogle Scholar
  31. Sandhyarani N, Pradeep T (2001) An investigation of the structure and properties of layered copper thiolates. J Mater Chem 11(4):1294. doi: 10.1039/b009837j CrossRefGoogle Scholar
  32. Saumya V, Rao TP (2012) Copper quantum cluster–polypyrrole composite film based zero current chronopotentiometric sensor for glutathione. Anal Methods 4(7):1976CrossRefGoogle Scholar
  33. Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T (2008) Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C 112(32):12168. doi: 10.1021/jp800508d CrossRefGoogle Scholar
  34. Shichibu Y, Negishi Y, Tsukuda T, Teranishi T (2005) Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J Am Chem Soc 127(39):13464. doi: 10.1021/ja053915s CrossRefGoogle Scholar
  35. Stellwagen D, Weber A, Bovenkamp GL, Jin R, Bitter JH, Kumar CSSR (2012) Ligand control in thiol stabilized Au38 clusters. RSC Adv 2(6):2276. doi: 10.1039/c2ra00747a CrossRefGoogle Scholar
  36. Udayabhaskararao T, Sun Y, Goswami N, Pal SK, Balasubramanian K, Pradeep T (2012) Ag7Au6: a 13-atom alloy quantum cluster. Angew Chem Int Ed 51(9):2155–2159. doi: 10.1002/anie.201107696 CrossRefGoogle Scholar
  37. Vilar-Vidal N, Blanco MC, LoÌpez-Quintela MA, Rivas J, Serra C (2010) Electrochemical synthesis of very stable photoluminescent copper clusters. J Phys Chem C 114(38):15924. doi: 10.1021/jp911380s CrossRefGoogle Scholar
  38. Wei Y, Chen S, Kowalczyk B, Huda S, Gray TP, Grzybowski BA (2010) Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J Phys Chem C 114(37):15612. doi: 10.1021/jp1055683 CrossRefGoogle Scholar
  39. Wei W, Lu Y, Chen W, Chen S (2011) One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 133(7):2060. doi: 10.1021/ja109303z CrossRefGoogle Scholar
  40. Xavier PL, Chaudhari K, Baksi A, Pradeep T (2012) Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nano Rev 3:14767. doi: 10.3402/nano.v3i0.14767 Google Scholar
  41. Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T (2012) Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal 2(7):1519. doi: 10.1021/cs300252g CrossRefGoogle Scholar
  42. Yuan X, Luo Z, Zhang Q, Zhang X, Zheng Y, Lee JY, Xie J (2011) Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 5(11):8800–8808. doi: 10.1021/nn202860s CrossRefGoogle Scholar
  43. Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130(4):1138. doi: 10.1021/ja0782448 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anindya Ganguly
    • 1
  • Indranath Chakraborty
    • 1
  • Thumu Udayabhaskararao
    • 1
  • Thalappil Pradeep
    • 1
  1. 1.DST Unit of Nanoscience (DST UNS), Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations