Mesoscopic Ni particles and nanowires by pulsed electrodeposition into porous Si

  • E. Michelakaki
  • K. Valalaki
  • A. G. Nassiopoulou
Research Paper
Part of the following topical collections:
  1. Nanostructured Materials 2012. Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos


We report in this article on the formation of mesoscopic Ni particles and filling of continuous Ni nanowires into porous Si layers of thickness in the range of 0.5–4 μm with anisotropic vertical pores of average diameter in the range of 30–45 nm using pulsed electrodeposition from a Ni salt solution. The effect of pulse duration, number of pulses, and total process time on pore filling was investigated for porous Si with different porosities and porous Si layer thicknesses in the above thickness range. Scanning and transmission electron microscopy were used to characterize the samples. It was found that pore filling starts with Ni nucleation and nanoparticle formation at different points of the pore walls along the whole pore length and continues with nanoparticle coalescence to form continuous Ni nanowires that completely fill the pores. The mechanism involved in pore filling is particle nucleation and diffusion-controlled growth of Ni nanoparticles that coalesce to nanowires. From the beginning of the process, a metal film starts to form on the porous Si surface, and its thickness increases with increasing the process time. However, the presence of this film does not impede further pore filling and nanowire formation into the pores. This supports further the diffusion-controlled growth mechanism. Finally, it was demonstrated that full pore filling and continuous Ni nanowire formation were also achieved under direct current electrodeposition, and the results are quite similar to those obtained with pulsed electrodeposition when the same total deposition time is used in both cases.


Ni nanoparticles Ni nanowires Porous Si Electrodeposition 



The research leading to these results has received the funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement NANOFUNCTION no 257375. The TEM micrographs were obtained by C. Giannakopoulos, while SEM images by C. Skoulikidou.


  1. Andricacos PC, Uzoh C, Dukovic JO et al (1998) Damascene copper electroplating for chip interconnections. IBM J Res Dev 42:567–574. doi: 10.1147/rd.425.0567 CrossRefGoogle Scholar
  2. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046. doi: 10.1063/1.103561 CrossRefGoogle Scholar
  3. Chenna A, Benbrahim N, Kadri A (2008) Electrochemical deposition of nickel thin films onto monocrystalline silicon. Afr Phys Rev 2:133–134Google Scholar
  4. Dolgiy A, Redko SV, Bandarenka H et al (2012) Electrochemical deposition and characterization of Ni in mesoporous silicon. J Electrochem Soc 159:D623–D627. doi: 10.1149/2.050210jes CrossRefGoogle Scholar
  5. Fang C, Foca E, Xu S et al (2007) Deep silicon macropores filled with copper by electrodeposition. J Electrochem Soc 154:D45. doi: 10.1149/1.2393090 CrossRefGoogle Scholar
  6. Fukami K, Kobayashi K, Matsumoto T et al (2008) Electrodeposition of noble metals into ordered macropores in p-type silicon. J Electrochem Soc 155:D443. doi: 10.1149/1.2898714 CrossRefGoogle Scholar
  7. Granitzer P, Rumpf K (2010) Porous silicon—a versatile host material. Materials 3:943–998. doi: 10.3390/ma3020943 CrossRefGoogle Scholar
  8. Granitzer P, Rumpf K, Albu M et al (2009) Three dimensional quasi-regular arrangement of ferromagnetic nanostructures within porous silicon. IEEE-NANO Organ 8:655–658Google Scholar
  9. Granitzer P, Rumpf K, Ohta T et al (2012) Enhanced magnetic anisotropy of Ni nanowire arrays fabricated on nano-structured silicon templates. Appl Phys Lett 101:033110. doi: 10.1063/1.4738780 CrossRefGoogle Scholar
  10. Jeske M, Schultze J, Thönissen M, Münder H (1995) Electrodeposition of metals into porous silicon. Thin Solid Films 255:6–9. doi: 10.1016/0040-6090(94)05605-D CrossRefGoogle Scholar
  11. Ji C, Oskam G, Searson PC (2001) Electrochemical nucleation and growth of copper on Si(111). Surf Sci 492:115–124. doi: 10.1016/S0039-6028(01)01410-8 CrossRefGoogle Scholar
  12. Kawail S, Ueda R (1975) Magnetic properties of anodic oxide coatings on aluminum containing electrodeposited Co and Co–Ni. J Electrochem Soc 122:32. doi: 10.1149/1.2134152 CrossRefGoogle Scholar
  13. Krumm R, Guel B, Schmitz C, Staikov G (2000) Nucleation and growth in electrodeposition of metals on n-Si(111). Electrochim Acta 45:3255–3262. doi: 10.1016/S0013-4686(00)00418-7 CrossRefGoogle Scholar
  14. Maity T, Li S, Keeney L, Roy S (2012) Ordered magnetic dipoles: controlling anisotropy in nanomodulated continuous ferromagnetic films. Phys Rev B 86:024438. doi: 10.1103/PhysRevB.86.024438 CrossRefGoogle Scholar
  15. Nguyen-Van-Dau F, Sussiau M, Schuhl a, Galtier P (1997) Magnetic thin films having a lateral nanostructural periodicity. J Appl Phys 81:4482. doi: 10.1063/1.364985 CrossRefGoogle Scholar
  16. Oskam G, Searson PC (2000) Electrochemical nucleation and growth of gold on silicon. Surf Sci 446:103–111. doi: 10.1016/S0039-6028(99)01113-9 CrossRefGoogle Scholar
  17. Penner RM (2002) Mesoscopic metal particles and wires by electrodeposition. J Phys Chem B 106:3339–3353. doi: 10.1021/jp013219o CrossRefGoogle Scholar
  18. Reiss H (1951) The growth of uniform colloidal dispersions. J Chem Phys 19:482. doi: 10.1063/1.1748251 CrossRefGoogle Scholar
  19. Rumpf K, Granitzer P, Pölt P et al (2006) Structural and magnetic characterization of Ni-filled porous silicon. Thin Solid Films 515:716–720. doi: 10.1016/j.tsf.2005.12.182 CrossRefGoogle Scholar
  20. Tehrani S, Chen E, Durlam M et al (1999) High density submicron magnetoresistive random access memory (invited). J Appl Phys 85:5822. doi: 10.1063/1.369931 CrossRefGoogle Scholar
  21. Volmer M, Weber A (1926) Keimbildung in übersättigten Gebilden (nucleation of supersaturated structures). Z Phys Chem 119:277–301Google Scholar
  22. Ye Z, Liu H, Luo Z et al (2009) Thickness dependence of the microstructures and magnetic properties of electroplated Co nanowires. Nanotechnology 20:045704. doi: 10.1088/0957-4484/20/4/045704 CrossRefGoogle Scholar
  23. Zacharatos F, Nassiopoulou AG (2008) Copper-filled macroporous Si and cavity underneath for microchannel heat sink technology. Phys Status Solid A 205:2513–2517. doi: 10.1002/pssa.200780161 CrossRefGoogle Scholar
  24. Zhang X, Xu C, Chong K et al (2011) Study of Ni metallization in macroporous Si using wet chemistry for radio frequency cross-talk isolation in mixed signal integrated circuits. Materials 4:952–962. doi: 10.3390/ma4060952 CrossRefGoogle Scholar
  25. Zoval JV, Stiger RM, Biernacki PR, Penner RM (1996) Electrochemical deposition of silver nanocrystallites on the atomically smooth graphite basal plane. J Phys Chem 100:837–844. doi: 10.1021/jp952291h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • E. Michelakaki
    • 1
  • K. Valalaki
    • 1
  • A. G. Nassiopoulou
    • 1
  1. 1.NCSR “Demokritos”/IMEL, Terma Patriarchou GrigoriouAthensGreece

Personalised recommendations