Advertisement

Ge quantum dot lattices in Al2O3 multilayers

  • M. Buljan
  • N. Radić
  • M. Ivanda
  • I. Bogdanović-Radović
  • M. Karlušić
  • J. Grenzer
  • S. Prucnal
  • G. Dražić
  • G. Pletikapić
  • V. Svetličić
  • M. Jerčinović
  • S. Bernstorff
  • V. Holý
Research Paper

Abstract

In this article, we show how to produce materials consisting of regularly ordered Ge quantum dot lattices in an amorphous alumina matrix with a controllable Ge quantum dot size, shape, spacing, crystalline structure, and degree of regularity in their ordering. The production of such materials is achievable already at room temperature by magnetron sputtering deposition of a (Ge + Al2O3)/Al2O3 multilayer. The materials show photoluminescence in the visible and ultraviolet light range, a size-dependent blue shift of the photoluminescence peak and an enhancement of its intensity by size reduction, indicating the quantum dot origin of the photoluminescence. The materials also exhibit excellent mechanical properties due to the alumina matrix. Their internal structure is shown to be highly resistive to irradiation with energetic particles for a large range of the irradiation parameters.

Keywords

Ge quantum dots GISAXS Photoluminescence Self-assembly Al2O3 

Notes

Acknowledgments

This work has been supported by the Ministry of Science Education and Sports, Croatia (project numbers 0982886-2895, 098-0982886-2859, 1191005-2876, 0982934-2744), and by the European Community as an Integrating Activity [Support of Public and Industrial Research Using Ion Beam Technology (SPIRIT)] under EC contract no. 227012. The authors are grateful to Medeja Gec for preparing samples for STEM measurements and Aleksa Pavlešin for the help in the sample preparation. We thank the HZDR ROBL beam line at the ESRF, Grenoble, for providing us beam time to study in situ the growth process. V. H. acknowledges the support of the Czech Science foundation (project P204/11/0785) and G. D. acknowledges the support of the Slovenian Research Agency (P2-0084).

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  2. Aluguri R, Das S, Manna S, Singha RK, Ray SK (2012) Photoluminescence characteristics of Er doped Ge nanocrystals embedded in alumina matrix. Opt Mater 34:1430–1433CrossRefGoogle Scholar
  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  4. Bogdanović-Radović I, Buljan M, Karlušić M, Skukan N, Božičević I, Jakšić M, Dražić G, Bernstorff S (2012) Ordering of germanium quantum dots in amorphous matrices by MeV ion beams—comparison with standard thermal annealing. Phys Rev B 86:165316CrossRefGoogle Scholar
  5. Bostedt C, van Buuren T, Willey TM, Franco N, Terminell LJ (2004) Controlling the electronic structure of nanocrystal assemblies by variation of particle–particle interaction. Appl Phys Lett 84:4056–4058CrossRefGoogle Scholar
  6. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560CrossRefGoogle Scholar
  7. Budai JD, White CW, Withrow SP, Chisholm MF, Zhu J, Zuhr RA (1997) Controlling the size, structure and orientation of semiconductor nanocrystals using metastable phase recrystallization. Nature 390:384–386CrossRefGoogle Scholar
  8. Buljan M, Desnica UV, Dražić G, Ivanda M, Radić N, Dubček P, Salamon K, Bernstorff S, Holy V (2009a) Formation of three-dimensional quantum dot superlattices in amorphous systems: experiments and Monte Carlo simulations. Phys Rev B 79:035310CrossRefGoogle Scholar
  9. Buljan M, Desnica UV, Dražić G, Ivanda M, Radić N, Dubček P, Salamon K, Bernstorff S, Holý V (2009b) The influence of deposition temperature on the correlation of Ge quantum dots positions in amorphous silica matrix. Nanotechnology 20:085612CrossRefGoogle Scholar
  10. Buljan M, Bogdanović-Radović I, Karlušić M, Desnica UV, Dražić G, Radić N, Dubček P, Salamon K, Bernstorff S, Holý V (2009c) Formation of long range ordered quantum dots arrays in amorphous matrix by ion beam irradiation. Appl Phys Lett 95:063104CrossRefGoogle Scholar
  11. Buljan M, Pinto SRC, Rolo AG, Martin Sanchez J, Gomes MJM, Mücklich A, Bernstorff S, Holy V (2010a) Self-assembling of Ge quantum dots in an alumina matrix. Phys Rev B 82:235407CrossRefGoogle Scholar
  12. Buljan M, Grenzer J, Keller A, Radić N, Valeš V, Bernstorff S, Cornelius T, Metzger HT, Holý V (2010b) Growth of spatially ordered Ge nanoclusters in an amorphous matrix on rippled substrate. Phys Rev B 82:125316CrossRefGoogle Scholar
  13. Buljan M, Bogdanović-Radović I, Karlušić M, Desnica UV, Radić N, Skukan N, Dražić G, Ivanda M, Matej Z, Valeš V, Grenzer J, Cornelius T, Metzger HT, Holý V (2010c) Generation of an ordered Ge quantum dot array in an amorphous silica matrix by ion beam irradiation: modeling and structural characterization. Phys Rev B 81:085321CrossRefGoogle Scholar
  14. Buljan M, Bogdanović-Radović I, Karlušić M, Salamon K, Dražić G, Desnica UV, Radić N, Bernstorff S, Jakšić M, Holý V (2011) Design of quantum dot lattices in amorphous matrices by ion beam irradiation. Phys Rev B 84:155312CrossRefGoogle Scholar
  15. Buljan M, Radić N, Bernstorff S, Dražić G, Bogdanović-Radović I, Holý V (2012) Grazing incidence small angle X-ray scattering: application in study of quantum dot lattices. Acta Crystallogr A A68:124–138CrossRefGoogle Scholar
  16. Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58:739–741CrossRefGoogle Scholar
  17. Chang TC, Yan ST, Liu PT, Chen CW, Lin SH, Sze SM (2004) A novel approach of fabricating germanium nanocrystals for nonvolatile memory application. Electrochem Solid State Lett 7:G17CrossRefGoogle Scholar
  18. Courty A, Mermet A, Alboy PA, Duval E, Pileni MP (2005) Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nat Mater 4:395–398CrossRefGoogle Scholar
  19. Das S, Singha RK, Dhar A, Ray SK, Anopchenko A, Daldosso N, Pavesi L (2011) Electroluminescence and charge storage characteristics of quantum confined germanium nanocrystals. J Appl Phys 110:024310CrossRefGoogle Scholar
  20. de Azevedo WM, da Silva EF Jr, de Vasconcelos EA, Boudinov H (2005) Visible photoluminescence form Ge nanoclusters in nanoporous aluminium oxide films. Microelectron J 36:992–994CrossRefGoogle Scholar
  21. de Boer WDAM, Timmerman D, Dohnalova K, Yassievich IN, Zhang H, Buma WJ, Gregorkiewicz T (2010) Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat Nanotechnol 5:878CrossRefGoogle Scholar
  22. Dowd A, Elliman RG, Samoc M, Luther-Davies B (1999) Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix. Appl Phys Lett 74:239CrossRefGoogle Scholar
  23. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  24. Grutzmacher D, Fromherz T, Dais C, Stangl J, Müller E, Ekinci Y, Solak HH, Sigg H, Lechner RT, Wintersberger E, Birner S, Holý V, Bauer G (2007) Three-dimensional Si/Ge quantum dot crystals. Nano Lett 7:3150–3156CrossRefGoogle Scholar
  25. Gusev EP, Cartier E, Buchanan DA, Gribelyuk M, Copel M, Okorn-Schmidt H, D’Emic C (2001) Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues. Microelectron Eng 59:34CrossRefGoogle Scholar
  26. Hedler A, Klaumünzer S, Wesch W (2005) Boundary effects on the plastic flow of amorphous layers during high-energy heavy-ion irradiation. Phys Rev B 72:054108CrossRefGoogle Scholar
  27. Jabbour GE, Doderer D (2010) Quantum dot solar cells—the best of both worlds. Nat Photonics 4:604–605CrossRefGoogle Scholar
  28. Jensen JS, Franzo G, Petersen TPL, Pereira R, Chevallier J, Petersen MC, Nielsen BB, Nylandsted Larsen AN (2006) Coupling between Ge-nanocrystals and defects in SiO(2). J Lumin 121:409–412CrossRefGoogle Scholar
  29. Kanjilal A, Lundsgaard Hansen J, Gaiduk P, Nylandsted Larsen A, Cherkashin N, Claverie A, Normand P, Kapelanakis E, Skarlatos D, Tsoukalas D (2003) Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy. Appl Phys Lett 82:1212CrossRefGoogle Scholar
  30. Klimov VI, Mikhailovsky AA, Su Xu, Malko A, Hollingsworth JA, Leatherdale CA, Eisler HJ, Bawendi MG (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317CrossRefGoogle Scholar
  31. Konstantatos G, Sargent EH (2010) Nanostructured materials for photon detection. Nat Nanotechnol 5:391CrossRefGoogle Scholar
  32. Kroutvar M, Ducommun Y, Heiss D, Bichler M, Schuh D, Abstreiter G, Finley JJ (2004) Optically programmable electron spin memory using semiconductor quantum dots. Nature 432:81–84CrossRefGoogle Scholar
  33. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers. Nature 464:45–53CrossRefGoogle Scholar
  34. Lee JJ, Wang XG, Bai WP, Lu N, Kwong D-L (2003) Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric. IEEE Trans Electron Devices 50:2067–2072CrossRefGoogle Scholar
  35. Liu Y, Gibbs M, Puthussery J, Gaik S, Ihly R, Hillhouse HW, Law M (2010) Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solid. Nano Lett 10:1960–1969CrossRefGoogle Scholar
  36. Maeda Y (1995) Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys Rev B 51:1658CrossRefGoogle Scholar
  37. Martin-Sanchez J, Marques L, Vieira EMF, Doan QT, Marchand A, El Hdiy A, Rolo AG, Pinto SRC, Ramos MMD, Chahboun A, Gomes MJM (2012) Ge nanocrystals with highly uniform size distribution deposited on alumina at room temperature by pulsed laser deposition: structural, morphological, and charge trapping properties. J Nanopart Res 14:843CrossRefGoogle Scholar
  38. Mi Z, Yang J, Bhattacharya P, Qin G, Ma Z (2009) High-performance quantum dot lasers and integrated optoelectronics on Si. Proc IEEE 97:1239–1249CrossRefGoogle Scholar
  39. Niquet YM, Allan G, Delerue C, Lannoo M (2000) Quantum confinement in germanium nanocrystals. Appl Phys Lett 77:1182–1184CrossRefGoogle Scholar
  40. Pinto SRC, Chahboun A, Buljan M, Khdorov A, Kashtiban RJ, Bangert U, Barradas NP, Alves E, Bernstorff S, Gomes MJM (2010) Multilayers of Ge nanocrystals embedded in Al2O3 matrix: structural and electrical studies. Microelectron Eng 87:2508–2512CrossRefGoogle Scholar
  41. Pinto SRC, Rolo AG, Buljan M, Chahboun A, Bernstorff S, Barradas NP, Alves E, Kashtiban RJ, Bangert U, Gomes MJM (2011) Low temperature fabrication of layered self-organized Ge clusters by RF-sputtering. Nanoscale Res Lett 6:341CrossRefGoogle Scholar
  42. Pinto SRC, Buljan M, Marques ML, Martín-Sánchez M, Conde O, Chahboun A, Ramos AR, Barradas NP, Alves E, Bernstorff S, Grenzer J, Mücklich A, Ramos MMD, Gomes MJM (2012) Influence of annealing conditions on formation of regular lattices of voids and Ge quantum dots in amorphous alumina matrix. Nanotechnology 23:405605CrossRefGoogle Scholar
  43. Rowell NL, Lockwood DJ, Berbezier I, Szkutnik PD, Ronda A (2009) Photoluminescence efficiency of self-assembled Ge nanocrystals. J Electrochem Soc 156:H913CrossRefGoogle Scholar
  44. Salamon K, Milat O, Buljan M, Desnica UV, Radić N, Dubček P, Bernstorff S (2009) Grazing incidence X-ray study of Ge-nanoparticle formation in (Ge:SiO2)/SiO2 multilayers. Thin Solid Films 517:1899–1903CrossRefGoogle Scholar
  45. Schneider JM, Sproul WD, Chia RWJ, Wong MS, Matthews A, Lee K (1997) Very-high-rate reactive sputtering of alumina hard coatings. Surf Coat Technol 96:262–266CrossRefGoogle Scholar
  46. Sharp XuQ, Yi DO, Yuan CW, Beeman JW, Yu KM, Ager JW, Chrzan DC, Haller EE (2006) Structural properties of Ge nanocrystals embedded in sapphire. J Appl Phys 100:114317CrossRefGoogle Scholar
  47. Shen JK, Wu CL, Tan C, Yan RK, Bao XM (2002) Correlation of electroluminescence with Ge nanocrystal sizes in Ge–SiO2 cosputtered films. Phys Lett A 300:307–310CrossRefGoogle Scholar
  48. Stollberg DW, Hampikia JM, Riester L, Carter WB (2003) Nanoindentation measurements of combustion CVD Al2O3 and YSZ films. Mat Sci Eng A 359:112–118CrossRefGoogle Scholar
  49. Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:15578CrossRefGoogle Scholar
  50. Takeoka S, Fujii M, Hayashi S, Yamamoto S (1998) Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices. Phys Rev B 58:7921CrossRefGoogle Scholar
  51. Torchynska TV, Polupan G, Palacios Gomes J, Kolobov AV (2003) Photoluminescence of Ge nano-crystallites embedded in silicon oxide. Microelectron J 34:541–543CrossRefGoogle Scholar
  52. Wu XL, Gao T, Siu GG, Tong S, Bao M (1999) Defect-related infrared photoluminescence in Ge+-implanted SiO2 films. Appl Phys Lett 74:2420–2422CrossRefGoogle Scholar
  53. Xu Q, Sharp ID, Yuan CW, Yi DO, Liao CY, Glaeser AM, Minor AM, Beeman JW, Ridgway MC, Kluth P, Ager JW, Chrzan DC, Haller EE (2006) Large melting-point hysteresis of Ge nanocrystals embedded in SiO2. Phys Rev Lett 97:155701CrossRefGoogle Scholar
  54. Yerci S, Kulakci M, Serincan U, Turan R, Shandalov M, Golan Y (2008) Formation of Ge nanocrystals in Al2O3 matrix. J Nanosci Nanotechnol 8:759–763CrossRefGoogle Scholar
  55. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Buljan
    • 1
  • N. Radić
    • 1
  • M. Ivanda
    • 1
  • I. Bogdanović-Radović
    • 1
  • M. Karlušić
    • 1
  • J. Grenzer
    • 2
  • S. Prucnal
    • 2
  • G. Dražić
    • 3
  • G. Pletikapić
    • 1
  • V. Svetličić
    • 1
  • M. Jerčinović
    • 1
  • S. Bernstorff
    • 4
  • V. Holý
    • 5
  1. 1.Ruđer Bošković InstituteZagrebCroatia
  2. 2.Helmholtz Zentrum Dresden RossendorfDresdenGermany
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia
  4. 4.Elettra-SincrotroneBasovizzaItaly
  5. 5.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations