Advertisement

Synthesis, characterization, shape evolution, and optical properties of copper sulfide hexagonal bifrustum nanocrystals

  • Baorui Jia
  • Mingli Qin
  • Xuezhi Jiang
  • Zili Zhang
  • Lin Zhang
  • Ye Liu
  • Xuanhui Qu
Article

Abstract

The hexagonal bifrustum-shaped copper sulfide (CuS) nanocrystals were selectively and facilely synthesized by a hydrothermal method for the first time at 120 °C. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, ultraviolet–visible (UV–Vis) spectroscopy, and photoluminescence spectroscopy. The results showed that the CuS hexagonal bifrustum nanocrystal was bounded by two top hexagons with edge length of about 50–70 nm and twelve lateral trapezoids with a base of about 100 nm and that the length of each hexagonal bifrustum was about 250 nm. Tetradecylamine (TDA), as an effective capping agent, was found to be critical for this special shape. Using different amounts of TDA, two kinds of CuS hexagonal bifrustum nanocrystals were obtained: “lender hexagonal bifrustum” and “pancake hexagonal bifrustum.” Furthermore, we studied the formation mechanism of hexagonal bifrustum, which is related to the intrinsic crystalline structure of CuS and Ostwald ripening. And, the results revealed that the CuS nanocrystal evolved from hexagonal plate to hexagonal bifrustum and finally to hexagonal bipyramid as the heating time increased. The UV–Vis absorption spectrum showed that these CuS hexagonal bifrustum nanocrystals exhibited strong absorption in the near-infrared region and had a potential application for photothermal therapy and photocatalysis.

Keywords

Copper sulfide (CuS) Hexagonal bifrustum Tetradecylamine (TDA) Hydrothermal method Shape evolution Optical property 

References

  1. Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Govind, Pal T (2010) Evolution of hierarchical hexagonal stacked plates of CuS from liquid–liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ Sci Technol 44:6313–6318. doi: 10.1021/es101323w CrossRefGoogle Scholar
  2. Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Pal T (2011) Fabrication and functionalization of CuO for tuning superhydrophobic thin film and cotton wool. J Phys Chem C 115:20953–20963. doi: 10.1021/jp206178x CrossRefGoogle Scholar
  3. Chen GY, Deng B, Cai GB, Dong WF, Zhang WX, Xu AW (2008) Synthesis, characterization, and formation mechanism of copper sulfide-core/carbon-sheath cables by a simple hydrothermal route. Cryst Growth Des 8:2137–2148. doi: 10.1021/cg701043f CrossRefGoogle Scholar
  4. Cheng Y, Wang YS, Bao F, Chen DQ (2006) Shape control of monodisperse CdS nanocrystals: hexagon and pyramid. J Phys Chem B 110:9448–9451. doi: 10.1021/jp0612073 CrossRefGoogle Scholar
  5. Chung JS, Sohn HJ (2002) Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J Power Sources 108:226–231. doi: S0378-7753(02)00024-1 CrossRefGoogle Scholar
  6. Gao MR, Jiang J, Yu SH (2012) Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8:13–27. doi: 10.1002/smll.201101573 CrossRefGoogle Scholar
  7. Jiang XC, Xie Y, Lu J, He W, Zhu LY, Qian YT (2000) Preparation and phase transformation of nanocrystalline copper sulfides (Cu9S8, Cu7S4 and CuS) at low temperature. J Mater Chem 10:2193–2196. doi: 10.1039/B002486O CrossRefGoogle Scholar
  8. Li F, Bi WT, Kong T, Qin QH (2009) Optical, photocatalytic properties of novel CuS nanoplate-based architectures synthesized by a solvothermal route. Cryst Res Technol 44:729–735. doi: 10.1002/crat.200800618 CrossRefGoogle Scholar
  9. Li YB, Lu W, Huang Q, Huang M, Li C, Chen W (2010) Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5:1161–1171. doi: 10.2217/NNM.10.85 CrossRefGoogle Scholar
  10. Mane RS, Lokhande CD (2002) Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys 65:1–31. doi: S0254-0584(00)00217-0 CrossRefGoogle Scholar
  11. Mao GZ, Dong WF, Kurth DG, Möhwald H (2004) Synthesis of copper sulfide nanorod arrays on molecular templates. Nano Lett 4:249–252. doi: 10.1021/nl034966v CrossRefGoogle Scholar
  12. Nagarathinam M, Saravanan K, Leong WL, Balaya P, Vittal JJ (2009) Hollow nanospheres and flowers of CuS from self-assembled Cu(II) coordination polymer and hydrogen-bonded complexes of N-(2-Hydroxybenzyl)-l-serine. Cryst Growth Des 9:4461–4470. doi: 10.1021/cg9004938 CrossRefGoogle Scholar
  13. Qu SM, Xie Q, Ma DK, Liang JB, Hu XK, Yu WC, Qian YT (2005) A precursor decomposition route to polycrystalline CuS nanorods. Mater Phys Chem 94:460–466. doi: 10.1016/j.matchemphys.2005.04.057 CrossRefGoogle Scholar
  14. Roy P, Srivastava SK (2006) Hydrothermal growth of CuS nanowires from Cu–dithiooxamide, a novel single-source precursor. Cryst Growth Des 6:1921–1926. doi: 10.1021/cg060134 CrossRefGoogle Scholar
  15. Roy P, Mondal K, Srivastava SK (2008) Synthesis of twinned CuS nanorods by a simple wet chemical method. Cryst Growth Des 8:1530–1534. doi: 10.1021/cg700780k CrossRefGoogle Scholar
  16. Singh KV, Martinez-morales AA, Andavan GTS, Bozhilov KN, Ozkan M (2007) A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition. Chem Mater 19:2446–2454. doi: 10.1021/cm0629356 CrossRefGoogle Scholar
  17. Tian QW, Tang MH, Sun YG, Zou RJ, Chen ZG, Zhu MF, Yang SP, Wang JL, Wang JH, Hu JQ (2011) Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 23:3542–3547. doi: 10.1002/adma.201101295 CrossRefGoogle Scholar
  18. Wang KJ, Li GD, Li JX, Wang Q, Chen JS (2007) Formation of single-crystalline CuS nanoplates vertically standing on flat substrate. Cryst Growth Des 7:2265–2267. doi: 10.1021/cg060640z CrossRefGoogle Scholar
  19. Wang XY, Fang Z, Lin X (2009) Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation. J Nanopart Res 11:731–736. doi: 10.1007/s11051-008-9480-2 CrossRefGoogle Scholar
  20. Xia YN, Xiong YJ, Lim B, Skrabalak SE (2008) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 47:60–103. doi: 10.1002/anie.200802248 CrossRefGoogle Scholar
  21. Yao KX, Yin XM, Wang TH, Zeng HC (2010) Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with 001 or 110 planes. J Am Chem Soc 132:6131–6144. doi: 10.1021/ja100151f CrossRefGoogle Scholar
  22. Yu XL, Cao CB, Zhu HS, Li QS, Liu CL, Gong QH (2007) Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties. Adv Funct Mater 8:1397–1401. doi: 10.1002/adfm.200600245 CrossRefGoogle Scholar
  23. Zhao N, Qi L (2006) Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv Mater 18:359–362. doi: 10.1002/adma.200501756 CrossRefGoogle Scholar
  24. Zhou M, Zhang R, Huang M, Li W, Song SL, Melancon MP, Tian M, Liang D, Li C (2010) A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 132:15351–15358. doi: 10.1021/ja106855m CrossRefGoogle Scholar
  25. Zhuang ZB, Peng Q, Li YD (2011) Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev 40:5492–5513. doi: 10.1039/C1CS15095B CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Baorui Jia
    • 1
  • Mingli Qin
    • 1
  • Xuezhi Jiang
    • 2
  • Zili Zhang
    • 1
  • Lin Zhang
    • 1
  • Ye Liu
    • 1
  • Xuanhui Qu
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Special Steel WorksNorth Heavy Industry GroupBaotouChina

Personalised recommendations