Skip to main content
Log in

Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Lipid nanoparticles (LNPs) are a promising carrier for all administration routes due to their safety, small size, and high loading of lipophilic compounds. Among the LNP production techniques, the easy scale-up, lack of organic solvents, and short production times of the high-pressure homogenization technique (HPH) make this method stand out. In this study, a statistical analysis was applied to the production of LNP by HPH. Spherical LNPs with mean size ranging from 65 nm to 11.623 μm, negative zeta potential under –30 mV, and smooth surface were produced. Manageable equations based on commonly used parameters in the pharmaceutical field were obtained. The lipid to emulsifier ratio (R L/S) was proved to statistically explain the influence of oil phase and surfactant concentration on final nanoparticles size. Besides, the homogenization pressure was found to ultimately determine LNP size for a given R L/S, while the number of passes applied mainly determined polydispersion. α-Tocopherol was used as a model drug to illustrate release properties of LNP as a function of particle size, which was optimized by the regression models. This study is intended as a first step to optimize production conditions prior to LNP production at both laboratory and industrial scale from an eminently practical approach, based on parameters extensively used in formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Araujo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB (2010) Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm 393:167–175

    Article  CAS  Google Scholar 

  • Biasutti M, Venir E, Marchesini G, Innocente N (2010) Rheological properties of model dairy emulsions as affected by high pressure homogenization. Innov Food Sci Emerg Technol 11:580–586

    Article  Google Scholar 

  • Bondì ML, Craparo EF, Giammona G, Drago F (2010) Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond, Engl) 5:25–32

    Article  Google Scholar 

  • Charcosset C, El-Harati A, Fessi H (2005) Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release 108:112–120

    Article  CAS  Google Scholar 

  • Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S (2007) Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 59:444–453

    Article  CAS  Google Scholar 

  • Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76

    Article  CAS  Google Scholar 

  • El-Harati AA, Charcosset C, Fessi H (2006) Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor. Pharm Dev Technol 11:153–157

    Article  CAS  Google Scholar 

  • Floury J, Desrumaux A, Lardières J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol 1:127–134

    Article  CAS  Google Scholar 

  • García-Fuentes M, Torres D, Alonso MJ (2002) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloid Surf B 27:159–168

    Article  Google Scholar 

  • Gasco MR (1997) Solid lipid nanospheres from warm microemulsion. Pharm Technol Eur 9:32–42

    Google Scholar 

  • Håkansson A, Fuchs L, Innings F, Revstedt J, Trägårdh C (2011) On flow-fields in a high pressure homogenizer and its implication on drop fragmentation. Procedia Food Sci 1:1353–1358

    Article  Google Scholar 

  • Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19:875–880

    Article  CAS  Google Scholar 

  • Hu FQ, Yuan H, Zhang HH, Fang M (2002) Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm 239:121–128

    Article  CAS  Google Scholar 

  • Innocente N, Biasutti M, Venir E, Spaziani M, Marchesini E (2009) Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes. J Dairy Sci 92:1864–1875

    Article  CAS  Google Scholar 

  • Jafari S, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22:1191–1202

    Article  CAS  Google Scholar 

  • Kluge J, Muhrer G, Mazzotti M (2012) High pressure homogenization of pharmaceutical solids. J Supercrit Fluids 66:380–388

    Article  CAS  Google Scholar 

  • Liedtke S, Wissing S, Müller RH, Mäder K (2000) Influence of high pressure homogenisation equipment on nanodispersions characteristics. Int J Pharm 196:183–185

    Article  CAS  Google Scholar 

  • Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2007) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328:191–195

    Article  CAS  Google Scholar 

  • Maindarkar SN, Raikar NB, Bongers P, Henson MA (2012) Incorporating emulsion drop coalescence into population balance equation models of high pressure homogenization. Colloids Surf A 396:63–73

    Article  CAS  Google Scholar 

  • McClements DJ (2005) Food emulsions principles, practices, and techniques, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  Google Scholar 

  • Mishra DK, Dhote V, Bhatnagar P, Mishra PK (2012) Engineering solid lipid nanoparticles for improved drug delivery: promises and challenges of translational research. Drug Deliv Transl Res 2:238–253

    Article  CAS  Google Scholar 

  • Mohr K-H (1987a) High-pressure homogenization. Part I. Liquid–liquid dispersion in turbulence fields of high energy density. J Food Eng 6:177–186

    Article  Google Scholar 

  • Mohr K-H (1987b) The influence of cavitation on liquid–liquid dispersion in turbulence fields of high energy density. J Food Eng 6:311–324

    Article  Google Scholar 

  • Mucho M, Maincent P, Müller RH (2008) Lipid nanoparticles with a solid matrix (LNP, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 34:1394–1405

    Article  Google Scholar 

  • Müller RH, Schwarz C, Zur Mühlen A, Mehnert W (1994) Incorporation of lipophilic drugs and drug release profiles of solid lipid nanoparticles (LNP). Proc Int Symp Control Release Bioact Mater 21:146

    Google Scholar 

  • Müller RH, Maassen S, Schwarz C, Mehnert W (1997) Solid lipid nanoparticles (LNP) as potential carrier for human use: interaction with human granulocytes. J Control Release 47:261–269

    Article  Google Scholar 

  • Müller RH, Dingler A, Schneppe T, Gohla S (2000a) Large scale production of solid lipid nanoparticles (SLN) and nanosuspensions (DissoCubes). In: Wise D (ed) Handbook of pharmaceutical controlled release technology [e-book]. Marcel Dekker, New York, pp 359–376

    Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000b) Solid lipid nanoparticles (LNP) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (LNP, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Article  CAS  Google Scholar 

  • Priano L, Esposti D, Castagna G, De Medici C, Fraschini F, Gasco MR, Mauro A (2007) Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. J Nanosci Nanotechnol 7:3596–3601

    Article  CAS  Google Scholar 

  • Puglia C, Blasi P, Rizza L, Schoubben A, Bonina F, Rossi C, Ricci M (2008) Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 357:295–304

    Article  CAS  Google Scholar 

  • Qian C, McClements DJ (2010) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll 25:1000–1008

    Article  Google Scholar 

  • Saheki A, Seki J, Nakanishi T, Tamai I (2012) Effect of back pressure on emulsification of lipid nanodispersions in a high-pressure homogenizer. Int J Pharm 422:489–494

    Article  CAS  Google Scholar 

  • Salmaso S, Elvassore N, Bertucco A, Caliceti P (2009) Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. J Pharm Sci 98:640–650

    Article  CAS  Google Scholar 

  • Schäfer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59:427–443

    Article  Google Scholar 

  • Schubert MA, Müller-Goymann CC (2003) Solvent injection as a new approach for manufacturing lipid nanoparticles—evaluation of the method and process parameters. Eur J Pharm Biopharm 55:125–131

    Article  CAS  Google Scholar 

  • Sebti T, Amighi K (2006) Preparation and in vitro evaluation of lipidic carriers and fillers for inhalation. Eur J Pharm Biopharm 63:51–58

    Article  CAS  Google Scholar 

  • Severino P, Santana MHA, Souto EB (2012) Optimizing LNP and NLC by 22 full factorial design: effect of homogenization technique. Mater Eng C 32:1375–1379

    Article  CAS  Google Scholar 

  • Sinha VR, Srivastava S, Goel H, Jindal V (2010) Solid lipid nanoparticles (SLN’S)—trends and implications in drug targeting. Int J Adv Pharm Sci 1:212–238

    CAS  Google Scholar 

  • Sjöstrom B, Bergenstahl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions: I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm 84:107–116

    Article  Google Scholar 

  • Souto EB, Müller RH (2006) Investigation of the factors influencing the incorporation of clotrimazole in LNP and NLC prepared by hot high-pressure homogenization. J Microencapsul 23:377–388

    Article  CAS  Google Scholar 

  • Trombino S, Cassano R, Muzzalupo R, Pingitore A, Cione E, Picci N (2009) Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization beta-carotene and alpha-tocopherol. Colloids Surf B 72:181–187

    Article  CAS  Google Scholar 

  • Trotta M, Debernardi F, Caputo O (2003) Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm 257:153–160

    Article  CAS  Google Scholar 

  • Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Azarmi S, Kobarfard F (2010) Development and optimization of solid lipid nanoparticles of amikacin by central composite design. J Liposome Res 20:97–104

    Article  CAS  Google Scholar 

  • Vitorino C, Carvalho FA, Almeida AJ, Sousa JJ, Pais AACC (2011) The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf B 84:117–130

    Article  CAS  Google Scholar 

  • Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349

    Article  CAS  Google Scholar 

  • Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24:12758–12765

    Article  CAS  Google Scholar 

  • Zur Mühlen A, Mehnert W (1998) Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie 53:552–555

    Google Scholar 

  • Zur Mühlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (LNP) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm 45:149–155

    Article  Google Scholar 

Download references

Acknowledgments

M. D. L. thanks University of Seville for a Grant from IV Research Plan of University of Seville. L. M. B. is especially grateful to Junta de Andalucía (Spain) for financial support (Project No. P09-CTS5029). Microscopy Services (Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla, CITIUS) technical support is also grateful. Authors also thank Dr. Álvarez-Fuentes for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Durán-Lobato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durán-Lobato, M., Enguix-González, A., Fernández-Arévalo, M. et al. Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach. J Nanopart Res 15, 1443 (2013). https://doi.org/10.1007/s11051-013-1443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1443-6

Keywords

Navigation