Advertisement

Photo-directed organization of silver nanoparticles in mesostructured silica and titania films

  • N. Destouches
  • Y. Battie
  • N. Crespo-Monteiro
  • F. Chassagneux
  • L. Bois
  • S. Bakhti
  • F. Vocanson
  • N. Toulhoat
  • N. Moncoffre
  • T. Epicier
Research Paper

Abstract

This paper quantifies the migration of silver contained within mesostructured hybrid silica films and mesoporous titania films under exposure to modulated light. This quantization allows to demonstrate that all of the initial silver salt can be concentrated and reduced in domains accumulating the higher photonic energy. Entirely reduced in the form of nanoparticles of few nanometers size embedded in the silica matrix, silver is then quite stable even under subsequent homogeneous exposures. It is also shown that thanks to the relatively slow nanoparticle growth, successive multiple exposures can be used to create complex 3D microstructures within silica films using a simple dual beam interferometer. In mesoporous titania films, the UV photo-growth of silver nanoparticles remains limited to the vicinity of the film interface because of the matrix absorption and cannot provide deep 3D patterns of silver nanoparticles. However, 2D refractive index patterns can be obtained under UV exposure, erased with visible light and updated thanks to a reversible photochromic behavior. In such films, opposite migration flows of silver species are proven under UV intensity gradient and homogeneous visible exposure.

Keywords

Mesoporous films UV interferometry Migration Microstructuring Photochromism 

Notes

Acknowledgments

This work was funded by grants from ANR PNANO and ANR JCJC in the frame of the POMESCO and UPCOLOR projects, respectively. The authors thank Annie Rivoire from the Centre Technologique des Microstructures, Université Claude Bernard—Lyon I for the sample preparation by ultramicrotomy and CLYM (www.clym.fr) for access to TEM. The Région Rhône Alpes is also gratefully acknowledged for its financial support.

References

  1. Battie Y, Destouches N, Bois L, Chassagneux F, Tishchenko A, Parola S, Boukenter A (2010a) Growth mechanisms and kinetics of photoinduced silver nanoparticles in mesostructured hybrid silica films under UV and visible illumination. J Phys Chem C 114:8679–8687CrossRefGoogle Scholar
  2. Battie Y, Destouches N, Bois L, Chassagneux F, Moncoffre N, Toulhoat N, Jamon D, Ouerdane Y, Parola S, Boukenter A (2010b) Generation of an ordered monolayer of silver nanoparticles in mesostructured dielectric films. J Nanopart Res 12:1073–1082CrossRefGoogle Scholar
  3. Battie Y, Destouches N, Chassagneux F, Jamon D, Bois L, Moncoffre N, Toulhoat N (2011) Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film. Opt Mater Express 1:1019–1033CrossRefGoogle Scholar
  4. Cozzoli PD, Fanizza E, Curri ML, Laub D, Agostiano A (2005) Low-dimensional chainlike assemblies of TiO2 nanorod-stabilized Au nanoparticles. Chem Commun 7:942–944CrossRefGoogle Scholar
  5. Crespo-Monteiro N, Destouches N, Bois L, Chassagneux, Reynaud S, Fournel T (2010) Reversible and irreversible laser microinscription on silver-containing mesoporous titania films. Adv Mater 22:3166–3170CrossRefGoogle Scholar
  6. Fukushima M, Yanagi H, Hayashi S, Sun HB, Kawata S (2004) Microfabrication of gold dots in SiO2/TiO2 glass films by two-photon absorption. Phys E 21:456–459CrossRefGoogle Scholar
  7. Gacoin T, Besson S, Boilot J (2006) Organized mesoporous silica films as templates for the elaboration of organized nanoparticle networks. J Phy Condens Matter 18:85–95CrossRefGoogle Scholar
  8. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  9. Harada M, Katagiri E (2010) Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis. Langmuir 26:17896–17905CrossRefGoogle Scholar
  10. Kaneko K, Moon W-J, Inoke K, Horita Z, Ohara S, Adschiri T, Abe H, Naito M (2005) Characterization of TiO2–Ag nanocomposite particles prepared by spray pyrolysis process using transmission electron microscopy and three-dimensional electron tomography. Mater Sci Eng A 403:32–36CrossRefGoogle Scholar
  11. Kawahara K, Suzuki K, Ohko Y, Tatsuma T (2005) Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism. Phys Chem Chem Phys 7:3851–3855CrossRefGoogle Scholar
  12. Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444–448CrossRefGoogle Scholar
  13. Martínez ED, Bellino MG, Soler-Illia GJA (2009) A patterned production of silver-mesoporous titania nanocomposite thin films using lithography-assisted metal reduction. Appl Mater Interfaces 1:746–749CrossRefGoogle Scholar
  14. Mayer M (1997) SIMNRA user’s guide, report IPP 9/113. Max-Planck-Institut für Plasmaphysik, GarchingGoogle Scholar
  15. Nadar L, Sayah R, Vocanson F, Crespo-Monteiro N, Boukenter A, Sao Joao S, Destouches N (2011) Influence of reduction processes on the colour and photochromism of amorphous mesoporous TiO2 thin films loaded with a silver salt. Photochem Photobiol Sci 10:1810–1816CrossRefGoogle Scholar
  16. Naoi K, Ohko Y, Tatsuma T (2004) TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J Am Chem Soc 126:3664–3668CrossRefGoogle Scholar
  17. Naoi K, Ohko Y, Tatsuma T (2005) Switchable rewritability of Ag–TiO2 nanocomposite films with multicolor photochromism. Chem Commun 10:1288–1290CrossRefGoogle Scholar
  18. Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C, Kubota Y, Fujishima A (2003) Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater 2:29–31CrossRefGoogle Scholar
  19. Palik ED (1985) Handbook of optical constants of solids, vol 1. Academic Press, WalthamGoogle Scholar
  20. Paramasivam I, Macak JM, Ghicov A, Schmuki P (2007) Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chem Phys Lett 445:233–237CrossRefGoogle Scholar
  21. Pelizzetti E (1986) Homogeneous and heterogeneous photocatalysis. D. Reidel Publishing Company, DordrechtCrossRefGoogle Scholar
  22. Qiu J, Shirai M, Nakaya T, Si J, Jiang X, Zhu C, Hirao K (2002) Space-selective precipitation of metal nanoparticles inside glasses. Appl Phys Lett 81:3040–3042CrossRefGoogle Scholar
  23. Richards VN, Rath NP, Buhro WE (2010) Pathway from a molecular precursor to silver nanoparticles: the prominent role of aggregative growth. Chem Mater 22:3556–3567CrossRefGoogle Scholar
  24. Sau TK, Rogach AL (2009) Nonspherical noble metal nanoparticles: colloid chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRefGoogle Scholar
  25. Velev OD, Gupta S (2009) Materials fabricated by micro and nanoparticle assembly—the challenging path from science to engineering. Adv Mater 21:1897–1905CrossRefGoogle Scholar
  26. Yang Y, Wang GP, Xie J, Zhang S (2005) Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography. Appl Phys Lett 86:173108CrossRefGoogle Scholar
  27. Zhang Y (2003) Photochromism and holographic recording in polymer film containing chiral azo molecules derived from amino acid. Opt Mater 22:187–192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • N. Destouches
    • 1
    • 2
    • 3
  • Y. Battie
    • 1
    • 2
    • 3
    • 7
  • N. Crespo-Monteiro
    • 1
    • 2
    • 3
  • F. Chassagneux
    • 4
  • L. Bois
    • 4
  • S. Bakhti
    • 1
    • 2
    • 3
  • F. Vocanson
    • 1
    • 2
    • 3
  • N. Toulhoat
    • 5
  • N. Moncoffre
    • 5
  • T. Epicier
    • 6
  1. 1.Université de LyonSaint-EtienneFrance
  2. 2.Laboratoire Hubert CurienCNRS, UMR 5516Saint-EtienneFrance
  3. 3.Université de Saint-EtienneSaint-EtienneFrance
  4. 4.Laboratoire Multimatériaux et InterfacesUniversité de LyonVilleurbanne CedexFrance
  5. 5.IPNL, CNRS/IN2P3Université LyonVilleurbanne CedexFrance
  6. 6.Matériaux, Ingénierie et Sciences (MATEIS), UMR 5510 CNRS, Université de Lyon, INSA-LyonVilleurbanne CedexFrance
  7. 7.Laboratoire de Chimie Physique-Approche Multiéchelle de Milieux Complexes (LCP-A2MC, EA4632)Université de LorraineMetzFrance

Personalised recommendations