Skip to main content
Log in

Synthesis and growth kinetics of spindly CuO nanocrystals via pulsed wire explosion in liquid medium

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

One-dimensional CuO nanocrystals with spindly structure were successfully synthesized using pulsed wire explosion technique in deionized water. By modulating the exploding medium temperature spherical Cu nanoparticles and one-dimensional CuO nanocrystals can be selectively synthesized. At low temperature (1 °C) the particle growth is governed by Ostwald ripening resulting in formation of equidimensional crystals (spherical). As the exploding temperature increases (60 °C), oriented aggregation in a preferential direction resulted in unique spindly nanostructure. A possible crystal growth mechanism for these nanostructures with various morphologies at different exploding temperature is proposed. Particle growth by Ostwald ripening or orientated aggregation is highly dependent on exploding medium temperature. This technique uses pulsed power, hence the energy consumption is low and it does not produce any process byproducts. This study will provide a mean by which a most energy efficient and eco-friendly synthesis of one-dimensional CuO nanocrystals can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen J, Deng SZ, Xu NS, Zhang W, Wen X, Yang S (2003) Temperature dependence of field emission from cupric oxide nanobelt films. Appl Phys Lett 83(4):746–748

    Article  CAS  Google Scholar 

  • Dong T-Y, Chen C-N, Cheng H-Y, Chen C-P, Jheng N-Y (2011) Controlled morphologies of copper oxide single crystalline nanostructures by wet chemistry and thermal decomposition processes. Inorg Chim Acta 367(1):158–165

    Article  CAS  Google Scholar 

  • Flagan RC, Lunden MM (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater Sci Eng, A 204(1–2):113–124

    Google Scholar 

  • Guo S, Wang E (2011) Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery. Acc Chem Res 44(7):491–500

    Article  CAS  Google Scholar 

  • Ha Y-C, Cho C (2010) Production of highly-dispersed nano-sized Sn powders in a liquid medium by using a high-energy electrical explosion. J Korean Phys Soc 57(6):1574–1576

    Article  CAS  Google Scholar 

  • Jarlborg T (2007) Effects of spin–phonon interaction within the CuO plane of high-TC superconductors. Physica C 454(1–2):5–14

    Article  CAS  Google Scholar 

  • Jia D (2007) The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres. Am J Phys 75(2):111

    Article  CAS  Google Scholar 

  • Katz JL (1992) Homogeneous nucleation theory and experiment: a survey. Pure Appl Chem 64(11):1661–1666

    Article  CAS  Google Scholar 

  • Kinemuchi Y, Murai K, Sangurai C, Cho CH, Suematsu H, Jiang W, Yatsui K (2003) Nanosize powders of aluminum nitride synthesized by pulsed wire discharge. J Am Ceram Soc 86(3):420–424

    Article  CAS  Google Scholar 

  • Krishnan S, Haseeb ASMA, Johan MR (2012) Preparation and low-temperature sintering of Cu nanoparticles for high-power devices. IEEE Trans Compon Packag Manuf Technol 2(4):587–592

    Article  CAS  Google Scholar 

  • Li Y, Yang X-Y, Feng Y, Yuan Z-Y, Su B-L (2012) One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit Rev Solid State Mater Sci 37(1):1–74

    Article  Google Scholar 

  • Liu Y, Hou D, Wang G (2004) A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater Chem Phys 86(1):69–73

    Article  CAS  Google Scholar 

  • Liu W, Chen G, He G, Zhang W (2011) Synthesis of starfish-like CuO nanocrystals through γ-irradiation and their application in lithium-ion batteries. J Nanopart Res 13(7):2705–2713

    Article  CAS  Google Scholar 

  • Lo K-J, Liao H-Y, Cheng H-W, Lin W-C, Yu B-Y, Shyue J–J, Chang C–C (2011) Polyol synthesis of polycrystalline cuprous oxide nanoribbons and their growth chemistry. J Nanopart Res 13(2):669–682

    Article  CAS  Google Scholar 

  • Murai K, Cho C, Suematsu H, Jiang W, Yatsui K (2005) Particle size distribution of copper nanosized powders prepared by pulsed wire discharge. IEEJ Trans Fundam Mater 125(1):39–44

    Article  Google Scholar 

  • Orel ZC, Anžlovar A, Dražić G, Žigon M (2007) Cuprous oxide nanowires prepared by an additive-free polyol process. Cryst Growth Des 7(2):453–458

    Article  CAS  Google Scholar 

  • Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed 41(7):1188–1191

    Article  CAS  Google Scholar 

  • Pandey P, Merwyn S, Agarwal G, Tripathi B, Pant S (2012) Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria. J Nanopart Res 14(1):1–13

    Article  Google Scholar 

  • Penn RL (2004) Kinetics of oriented aggregation. J Phys Chem B 108(34):12707–12712

    Article  CAS  Google Scholar 

  • Penn RL, Oskam G, Strathmann TJ, Searson PC, Stone AT, Veblen DR (2001) Epitaxial assembly in aged colloids. J Phys Chem B 105(11):2177–2182

    Article  CAS  Google Scholar 

  • Polleux J, Pinna N, Antonietti M, Niederberger M (2004) Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv Mater 16(5):436–439

    Article  CAS  Google Scholar 

  • Qing Z, Qiaogen Z, Jun Z, Junping Z, Lei P, Baozhong R (2011) Effect of circuit parameters and wire properties on exploding a copper wire in water. IEEE Tran Plasma Sci 39(7):1606–1612

    Article  Google Scholar 

  • Rahnama A, Gharagozlou M (2012) Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt Quantum Electron 44(6):313–322

    Article  CAS  Google Scholar 

  • Seo S-D, Jin Y-H, Lee S-H, Shim H-W, Kim D-W (2011) Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes. Nanoscale Res Lett 6(1):1–7

    Article  Google Scholar 

  • Simchi A, Ahmadi R, Reihani SMS, Mahdavi A (2007) Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process. Mater Des 28(3):850–856

    Article  CAS  Google Scholar 

  • Sindhu TK et al (2008) Understanding nanoparticle formation by a wire explosion process through experimental and modelling studies. Nanotechnology 19(2):025703

    Article  CAS  Google Scholar 

  • Suzuki K, Tanaka N, Ando A, Takagi H (2012) Size-selected copper oxide nanoparticles synthesized by laser ablation. J Nanopart Res 14(5):1–11

    Article  Google Scholar 

  • Tokoi Y, Suzuki T, Nakayama T, Suematsu H, Jiang W, Niihara K (2008) Effect of wire diameter on particle size of metal nanosized powder prepared by pulsed wire discharge. J Jpn Soc Powder Powder Metall 55(3):192–197

    Article  CAS  Google Scholar 

  • Wang G, Peng Q, Li Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44(5):322–332

    Article  Google Scholar 

  • Yao W-T, Yu S-H, Zhou Y, Jiang J, Wu Q-S, Zhang L, Jiang J (2005) Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid–liquid phase arc discharge process. J Phys Chem B 109(29):14011–14016

    Article  CAS  Google Scholar 

  • Zhang J, Liu J, Peng Q, Wang X, Li Y (2006a) Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater 18(4):867–871

    Article  CAS  Google Scholar 

  • Zhang Y, Wang S, Li X, Chen L, Qian Y, Zhang Z (2006b) CuO shuttle-like nanocrystals synthesized by oriented attachment. J Cryst Growth 291(1):196–201

    Article  CAS  Google Scholar 

  • Zhu J, Bi H, Wang Y, Wang X, Yang X, Lu L (2008) CuO nanocrystals with controllable shapes grown from solution without any surfactants. Mater Chem Phys 109(1):34–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University of Malaya under FRGS Grant No. FP013/2010B. The authors would also like to thank ON Semiconductor management for their financial support in purchasing the PWE system for this research. We are grateful to the UM and UKM (CRIM) lab assistants who supported us in the FESEM, XRD, and TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutesh Krishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, S., Haseeb, A.S.M.A. & Johan, M.R. Synthesis and growth kinetics of spindly CuO nanocrystals via pulsed wire explosion in liquid medium. J Nanopart Res 15, 1410 (2013). https://doi.org/10.1007/s11051-012-1410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1410-7

Keywords

Navigation