Skip to main content

Advertisement

Log in

MRI contrast demonstration of antigen-specific targeting with an iron-based ferritin construct

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A genetically modified ferritin has been examined for its properties as a tumor-selective magnetic resonance imaging (MRI) contrast agent. The engineered ferritin described herein was derived from Archaeoglobus fulgidus (AfFtn-AA), which stores a significantly greater quantity of iron than wild-type ferritins. Relaxivity measurements were taken at 3 Tesla of ferritin particles uniformly distributed in an agarose gel to assess relaxivities r 1 and r 2. The r 1 and r 2 values of the uniformly distributed modified ferritin were significantly higher (r 1 = 1,290 mM−1 s−1 and r 2 = 5,740 mM−1 s−1) than values observed for wild-type ferritin (e.g., horse spleen, r 1 = 0.674 mM−1 s−1, r 2 = 95.54 mM−1 s−1). The modified iron-enriched ferritin (14.5 nm diameter) was conjugated with a monoclonal antibody (10 nm length) against rat Necl-5, a cell surface glycoprotein overexpressed by many epithelial cancers. In vitro studies showed strong reactivity of the assembled nanoconjugate to transformed Necl-5 positive rat prostate epithelial cells. Furthermore, MRI demonstrated a significant T2 contrast with negligible T1 effect when bound to cells. These findings highlight the utility of the modified ferritin construct as a novel MRI contrast agent that can be manipulated to target antigen-specific tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MRI:

Magnetic resonance imaging

DTPA:

Diethylenetriaminepentaacetic acid

BDEC:

Rat bile duct epithelial cells

PEC:

Prostate epithelial cells

Necl-5:

Nectin-like molecule 5

TR:

Repetition time

TE:

Echo time

SPION:

Superparamagnetic iron oxide nanoparticle

References

  • Aime S, Frullano L, Crich SG (2002) Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chem Int Ed 41:1017–1019

    Article  CAS  Google Scholar 

  • American Cancer Society (2011) Cancer facts and figures 2011, Atlanta

  • Bonomi F, Pagani S (1986) Removal of ferritin-bound iron by DL-dihydrolipoate and DL-dihydrolipoamide. Eur J Biochem 155:295–300

    Article  CAS  Google Scholar 

  • Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48:52–61

    Article  CAS  Google Scholar 

  • Britt DE, Yang DF, Yang DQ, Flanagan D, Callanan H, Lim YP, Lin SH, Hixson DC (2004) Identification of a novel protein, LYRIC, localized to tight junctions of polarized epithelial cells. Exp Cell Res 300:134–148

    Article  CAS  Google Scholar 

  • Bulte JW, Brooks RA, Moskowitz BM, Bryant LH Jr, Frank JA (1999) Relaxometry and magnetometry of the MR contrast agent MION-46L. Magn Reson Med 42:379–384

    Article  CAS  Google Scholar 

  • Bydder GM, Young IR (1985) MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 9:659–675

    Article  CAS  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics and applications. Chem Rev 99:2293–2342

    Article  CAS  Google Scholar 

  • Carr DH, Brown J, Bydder GM, Steiner RE, Weinmann HJ, Speck U, Hall AS, Young IR (1984) Gadolinium-DTPA as a contrast agent in MRI. Am J Roentgenol 143:215–224

    CAS  Google Scholar 

  • Chadeneau C, Denis MG, Blottiere HM, Gregoire M, Douillard JY, Meflah K (1991) Characterization, isolation and amino terminal sequencing of a rat colon carcinoma-associated antigen. Int J Cancer 47:903–908

    Article  CAS  Google Scholar 

  • Chasteen ND, Harrison PM (1999) Mineralization in ferritin: an efficient means of iron storage. J Struct Biol 126:182–194

    Article  CAS  Google Scholar 

  • Chou R, Croswell JM, Dana T, Bougatsos BI, Fu R, Gleitsmann K, Koenig HC, Lam C, Maltz A, Rugge JB, Lin K (2011) Screening for prostate cancer—a review of the evidence for the U.S. preventive services task force. Ann Inter Med 155:762–771

    Google Scholar 

  • Dias MHM, Lauterbur PC (1986) Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen. Magn Reson Med 3:328–330

    Article  CAS  Google Scholar 

  • Erickson BM, Thompson NL, Hixson DC (2006) Tightly regulated induction of the adhesion molecule Necl-5/CD155 during rat liver regeneration and acute liver injury. Hepatology 43:325–334

    Article  CAS  Google Scholar 

  • Faris RA, McEntire KD, Thompson NL, Hixson DC (1990) Identification and characterization of a rat hepatic oncofetal membrane glycoprotein. Cancer Res 50:4755–4763

    CAS  Google Scholar 

  • Fisel CR, Ackerman JL, Buxton RB, Garrido L, Belliveau JW, Rosen BR, Brady TJ (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17:336–347

    Article  CAS  Google Scholar 

  • Glahn RP, Gangloff MB, van Campen DR, Miller DD, Wien EM, Norvell WA (1995) Bathophenanthrolene disulfonic acid and sodium dithionite effectively remove surface-bound iron from caco-2 cell monolayers. J Nutr 125:1833–1840

    CAS  Google Scholar 

  • Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E (2000) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA 97:6803–6808

    Article  CAS  Google Scholar 

  • Hardy PA, Henkelman RM (1989) Transverse relaxation rate enhancement caused by magnetic particulates. Magn Reson Imaging 7:265–275

    Article  CAS  Google Scholar 

  • Harrison P, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta Bioenerg 1275:161–203

    Article  Google Scholar 

  • Hixson DC, McEntire K, Chesner J, Faris R, Weltman J, Marceau N (1986) Monoclonal antibody (MAb) recognizing a glycoprotein absent from normal tissues but present on transplantable (THC) and primary (PHC) hepatocellular carcinomas induced by azo dye. Proc AACR 27:365

    Google Scholar 

  • Ikeda W, Kakunaga S, Takekuni K, Shingai T, Satoh K, Morimoto K, Takeuchi T, Imai T, Takai Y (2004) Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, nectin-3 independent manner. J Biol Chem 279:18015–18025

    Article  CAS  Google Scholar 

  • Johnson E, Cascio D, Sawaya MR, Gingery M, Schröder I (2005) Crystal structures of a tetrahedral open pore ferritin from the hyperthermophilic archaeon Archaeoglobus fulgidus. Structure 13:637–648

    Article  CAS  Google Scholar 

  • Jordan VC, Caplan MR, Bennett KM (2010) Simplified synthesis and relaxometry of magnetoferritin for magnetic resonance imaging. J Magn Med 64:1260–1266

    Article  CAS  Google Scholar 

  • Koenig SH, Kellar KE (1995) Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34:227–233

    Article  CAS  Google Scholar 

  • Lim YP, Fowler LC, Hixson DC, Wehbe T, Thompson NL (1996) TuAg.1 is the liver isoform of the rat colon tumor-associated antigen pE4 and a member of the immunoglobulin-like supergene family. Cancer Res 56:3934–3940

    CAS  Google Scholar 

  • Liu X, Jin W, Theil EC (2001) Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomaterial. Proc Natl Acad Sci USA 100:3653–3658

    Article  Google Scholar 

  • Majmudar S, Gore JC (1988) Studies of diffusion in random fields produced by variations in susceptibility. J Magn Reson 78:41–55

    Google Scholar 

  • Majmudar S, Zoghbi SS, Gore JC (1989) The influence of pulse sequences on the relaxation effects of superparamagnetic iron oxide contrast agents. Magn Reson Med 10:289–301

    Article  Google Scholar 

  • Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG (2001) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49:236–240

    Article  CAS  Google Scholar 

  • May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ (2000) Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls. RadioGraphics 20:S295–S315

    Google Scholar 

  • Minami Y, Ikeda W, Kajita M, Fujito T, Monden M, Takai Y (2007) Involvement of up-regulated Necl-5/Tage4/PVR/CD155 in the loss of contact inhibition in transformed NIH3T3 cells. Biochem Biophys Res Commun 352(4):856–860

    Article  CAS  Google Scholar 

  • Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164

    Article  CAS  Google Scholar 

  • Muller RN, Gillis P, Moiny F, Roch A (1991) Transverse relaxivity of particulate MRI contrast media: from theories to experiments. Magn Reson Med 22:178–182

    Article  CAS  Google Scholar 

  • Ogawa S, Tank D, Menon R, Ellerman JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    Article  CAS  Google Scholar 

  • Rozich RA, Mills DR, Brilliant KE, Callanan HM, Yang DQ, Tantravahi U, Hixson DC (2010) Accumulation of neoplastic traits prior to spontaneous in vitro transformation of rat cholangiocytes determines susceptibility to activated ErbB-2/Neu. Exp Mol Pathol 89:248–259

    Article  CAS  Google Scholar 

  • Sana B, Johnson E, Sheah K, Poh CL, Lim S (2010) Iron-based ferritin nanocore as a contrast agent. Biointerphases 5(3):48–52

    Article  Google Scholar 

  • Sato T, Irie K, Ooshio T, Ikeda W, Takai Y (2004) Involvement of heterophilic trans-interaction of Necl-5/Tage4/PVR/CD155 with nectin-3 in formation of nectin- and cadherin-based adherens junctions. Genes Cells 9:791–799

    Article  CAS  Google Scholar 

  • Simon GH, Bauer J, Sabrowski O, Fu Y, Corot C, Wendland MF, Daldrup-Link HE (2006) T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR imaging. Eur Radiol 16:738–745

    Article  Google Scholar 

  • Sloan KE, Eustace BK, Stewart JK, Zehetmeier C, Torella C, Simeone M, Roy JE, Unger C, Louis DN, Ilag LL, Jay DG (2004) CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 4:73

    Article  Google Scholar 

  • Swift J, Butts CA, Cheung-Liu J, Yerubandi V, Dmochowski IJ (2009) Efficient self-assembly of archaeoglobus fulgidus ferritin around metallic cores. Langmuir 25:5219–5225

    Article  CAS  Google Scholar 

  • Taylor RM, Huber DL, Monson TC, Abdul-Medhi A, Bisoffe M, Sillerud LO (2011) Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging. J Nanopart Res 13:4717–4729

    Article  CAS  Google Scholar 

  • Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Julita M, Young MJ, Douglas T (2006) Targeting of cancer cells with ferromagnetic ferritin cage nanoparticles. J Am Chem Soc 128:16626–16633

    Article  CAS  Google Scholar 

  • Uchida M, Terashima M, Cunningham CH, Suzuki Y, Willits DA, Willis AF, Yang PC, Tsao PS, McConnell MV, Young MJ, Douglas T (2008) A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn Reson Med 60:1073–1081

    Article  CAS  Google Scholar 

  • Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610

    Article  CAS  Google Scholar 

  • Weissleder R, Cheng HC, Bogdanova A, Bogdanov A Jr (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263

    Article  CAS  Google Scholar 

  • Yoshimura H (2006) Protein-assisted nanoparticle synthesis. Colloids Surf A 282–283:464–470

    Article  Google Scholar 

  • Zalipsky S (1995) Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconj Chem 6:150–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P20GM103421. The previous segment of this project was supported by the National Center for Research Resources (NCRR) under P20 RR 017695. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Research support was also provided by a grant from the Brown University/Lifespan Department of Diagnostic Imaging under award number 2010-3, Lifespan Research Seed Grant 2012, and Academic Research Fund Tier 1 from Singapore Ministry of Education (RG33/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, E.G., Mills, D.R., Lim, S. et al. MRI contrast demonstration of antigen-specific targeting with an iron-based ferritin construct. J Nanopart Res 15, 1409 (2013). https://doi.org/10.1007/s11051-012-1409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1409-0

Keywords

Navigation