Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

  • Emilio I. Alarcon
  • Carlos J. Bueno-Alejo
  • Christopher W. Noel
  • Kevin G. Stamplecoskie
  • Natalia L. Pacioni
  • Horacio Poblete
  • J. C. Scaiano
Research Paper


Thermally denatured human serum albumin interacts with ~3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH2 blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank’s buffer, Tris–HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag+ ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH2 in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH2 blocking, leading primarily to cubes and plates with sizes around 5–15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA@AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.


Silver nanoparticles Human serum albumin Lysine residues Plasmon mediated protein denaturation 



This work was supported by the Natural Sciences and Engineering Research Council of Canada. We thank Michel Grenier who designed the LED irradiation system, as well as for his support in laser flash photolysis measurements. EIA. thanks Becas Chile for Post-Doctoral support. HP thanks the Programa de Doctorado en Ciencias Aplicadas at Universidad de Talca, Chile for financial support. We would like to thanks Prof. Christopher Boddy, University of Ottawa, for providing the bacterial strand employed in this work.

Supplementary material

11051_2012_1374_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2281 kb)


  1. Alarcon E, Aspee A, Abuin EB, Lissi EA (2012) Evaluation of solute binding to proteins and intra-protein distances from steady state fluorescence measurements. J Photochem Photobiol B 106(1):1–17. doi: 10.1016/j.jphotobiol.2011.11.002 CrossRefGoogle Scholar
  2. Alarcón E, Edwards AM, Garcia AM, Muñoz M, Aspée A, Borsarelli CD, Lissi EA (2009) Photophysics and photochemistry of zinc phthalocyanine/bovine serum albumin adducts. Photochem Photobiol Sci 8(2):255–263. doi: 10.1039/B815726J CrossRefGoogle Scholar
  3. Alarcón E, Edwards AM, Aspée A, Gonzalez-Nilo D, Moran FE, Borsarelli CD, Lissi EA, Poblete H, Scaiano JC (2010) Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization. Photochem Photobiol Sci 9(1):93–102. doi: 10.1039/B9PP00091G CrossRefGoogle Scholar
  4. Alarcón E, Udekwu K, Skog M, Pacioni NL, Stamplecoskie KL, Gonzalez-Béjar M, Polisetti N, Wickham A, Richter-Dahlfors A, Griffith M, Scaiano JC (2012) The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19):4947–4956. doi: 10.1016/j.biomaterials.2012.03.033 CrossRefGoogle Scholar
  5. Aspée A, Orrego A, Alarcón E, Alarcón CL, Poblete H, González-Nilo D (2009) Antioxidant reactivity towards nitroxide probes anchored into human serum albumin. A new model for studying antioxidant repairing capacity of protein radicals. Bioorg Med Chem Lett 19(22):6382–6385. doi: 10.1016/j.bmcl.2009.09.070 CrossRefGoogle Scholar
  6. Ben-Yakar A, Eversole D, Ekici O (2008) Spherical and anisotropic gold nanoparticles in plasmonic laser phototherapy of cancer. In: Kumar C (ed) Non-magnetic metallic nanomaterials for life science, vol 10, nanomaterials for life sciences. Wiley, Weinheim, pp 493–539Google Scholar
  7. Borissevitch IE, Tominaga TT, Imasato H, Tabak M (1996) Fluorescence and optical absorption study of interaction of two water soluble porphyrins with bovine serum albumin. The role of albumin and porphyrin aggregation. J Lumin 69(2):65–76. doi: 10.1016/0022-2313(96)00037-3 CrossRefGoogle Scholar
  8. Bretschneider JC, Reismann M, Von Plessen G, Simon U (2009) Photothermal control of the activity of HRP–functionalized gold nanoparticles. Small 5(22):2549–2553. doi: 10.1002/smll.200900544 CrossRefGoogle Scholar
  9. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. doi: 10.1021/cr030063a CrossRefGoogle Scholar
  10. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637. doi: 10.1016/j.addr.2008.08.003 CrossRefGoogle Scholar
  11. Cheong SK, Krishnan S, Cho SH (2009) Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Med Phys 36(10):4664–4671. doi: 10.1118/1.3215536 CrossRefGoogle Scholar
  12. Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62(3):339–345. doi: 10.1016/j.addr.2009.11.006 CrossRefGoogle Scholar
  13. Cınta S, Vogel E, Maniu D, Aluas M, Iliescu T, Cozar O, Kiefer W (1999) SERS mechanisms of the vitamin PP on different Au and Ag surfaces. J Mol Struct 482–483(1–3):679–684. doi: 10.1016/S0022-2860(99)00024-1 Google Scholar
  14. Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37(9):2096–2126. doi: 10.1039/B707314N CrossRefGoogle Scholar
  15. De-Llanos R, Sánchez-Cortes S, Domingo C, García-Ramos JV, Sevilla P (2011) Surface plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115(25):12419–12429. doi: 10.1021/jp111683c CrossRefGoogle Scholar
  16. Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, von Plessen G, Gittins DI, Mayya KS, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70(20):205424. doi: 10.1103/PhysRevB.70.205424 CrossRefGoogle Scholar
  17. Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR (2009) Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano 3(4):984–994. doi: 10.1021/nn900079e CrossRefGoogle Scholar
  18. Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49(2):147–152. doi: 10.1111/j.1472-765X.2009.02648.x CrossRefGoogle Scholar
  19. Elswaifi SF, Palmieri JR, Hockey KS, Rzigalinski BA (2009) Antioxidant nanoparticles for control of infectious disease. Infect Disord Drug Targets 9(4):445–452. doi: 10.2174/187152609788922528 CrossRefGoogle Scholar
  20. Epps DE, Rub TJ, Canola V, Chari A, Zamia M (1998) Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein. J Pharm Pharmacol 51(1):41–48. doi: 0.1211/0022357991772079 CrossRefGoogle Scholar
  21. Fasciani C, Bueno Alejo CJ, Grenier M, Netto-Ferreira JC, Scaiano JC (2011) High-temperature organic reactions at room temperature using plasmon excitation: decomposition of dicumyl peroxide. Org Lett 13(2):204–207. doi: 10.1021/ol1026427 CrossRefGoogle Scholar
  22. Garcia AM, Alarcon E, Munoz M, Scaiano JC, Edwards AM, Lissi EA (2011) Photophysical behavior and photodynamic activity of zinc phthalocyanines associated to liposomes. Photochem Photobiol Sci 10(4):504–514. doi: 10.1039/C0PP00289E CrossRefGoogle Scholar
  23. Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L (2012) Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 28(25):9673–9679. doi: 10.1021/la301104a CrossRefGoogle Scholar
  24. Harmatz D, Blauer G (1975) Optical properties of bilirubin-serum albumin complexes in aqueous solution. A comparison among albumins from different species. Archives of Biochemistry and Biophysics 170(2):375–383. doi: 10.1016/0003-9861(75)90132-0
  25. Herne TM, Ahern AM, Carrel RL (1991) Surface-enhanced Raman spectroscopy of peptides: preferential N-terminal adsorption on colloidal silver. J Am Chem Soc 113(3):846–854. doi: 10.1021/ja00003a018 CrossRefGoogle Scholar
  26. Holland JT, Lau C, Brozik S, Atanassov P, Banta S (2011) Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J Am Chem Soc 133(48):19262–19265. doi: 10.1021/ja2071237 CrossRefGoogle Scholar
  27. Honore B, Brodersen R (1984) Albumin binding of anti-inflammatory drugs. Utility of a site oriented versus a stoichiometric analysis. Mol Pharmacol 25(1):137–150Google Scholar
  28. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. doi: 10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  29. Jockusch S, Landis MS, Freiermuth B, Turro NJ (2001) Photochemistry and photophysics of α-hydroxy ketones. Macromolecules 34(6):1619–1626. doi: 10.1021/ma001836p CrossRefGoogle Scholar
  30. Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6(1):100–115. doi: 10.1021/nl0516862 CrossRefGoogle Scholar
  31. Kragh-Hansen U (1990) Structure and ligand binding properties of human serum albumin (review). Dan Med Bull 37(1):57–84Google Scholar
  32. Kubista M, Sojback R, Ericksson S, Albinsson B (1994) Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 119(3):417–419. doi: 10.1039/AN9941900417 CrossRefGoogle Scholar
  33. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122. doi: 10.1007/s00253-009-2159-5 CrossRefGoogle Scholar
  34. Lynch I, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3(1):40–47. doi: 10.1016/S1748-0132(08)70014-8 CrossRefGoogle Scholar
  35. Mariam J, Dongre PM, Kothari DC (2011) Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc 21(6):2193–2199. doi: 10.1007/s10895-011-0922-3 CrossRefGoogle Scholar
  36. Marin ML, McGilvray KL, Scaiano JC (2008) Photochemical strategies for the synthesis of gold nanoparticles from Au(III) and Au(I) using photoinduced free radical generation. J Am Chem Soc 130(49):16572–16584. doi: 0.1021/ja803490n CrossRefGoogle Scholar
  37. McEachran M, Kitaev V (2008) Direct structural transformation of silver platelets into right bipyramids and twinned cube nanoparticles: morphology governed by defects. Chem Comm 44:5737–5739. doi: 10.1039/B813519C CrossRefGoogle Scholar
  38. McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128(50):15980–15981. doi: 10.1021/ja066522h CrossRefGoogle Scholar
  39. Murawala P, Phadnis SM, Bhonde RR, Prasad BLV (2009) In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies. Coll Surf B 73(2):224–228. doi: 10.1016/j.colsurfb.2009.05.029 CrossRefGoogle Scholar
  40. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870. doi: 10.1021/jp0516846 CrossRefGoogle Scholar
  41. Nangia Y, Wangoo N, Goyal N, Suri CR (2009) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact 8(1):39–46. doi: 10.1186/1475-2859-8-39 CrossRefGoogle Scholar
  42. Nayac NC, Shin K (2008) Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres. Nanotechnology 46(19):265603. doi: 10.1088/0957-4484/19/26/265603 CrossRefGoogle Scholar
  43. Pattabi RM, Pattabi M (2009) Synthesis and characterization of thiosalicylic acid stabilized gold nanoparticles. Spect Acta: A 74(1):195–199CrossRefGoogle Scholar
  44. Peters T (1996) All about albumin proteins: biochemistry, genetics and medical applications, 1st edn. Academic Press, New YorkGoogle Scholar
  45. Pinkerton TC, Koeplinger KA (1990) Determination of warfarin-human serum albumin protein binding parameters by an improved Hummel-Dreyer high-performance liquid chromatographic method using internal surface reversed-phase columns. Anal Chem 62(19):2114–2122. doi: 10.1021/ac00218a013 CrossRefGoogle Scholar
  46. Ravindran A, Singh A, Raichur AM, Chandrasekaran N, Mukherjee A (2010) Studies on interaction of colloidal Ag nanoparticles with Bovine serum albumin (BSA). Coll Surf B 76(1):32–37. doi: 10.1016/j.colsurfb.2009.10.005 CrossRefGoogle Scholar
  47. Raymond FC, Gerald GV, Alexander N (1967) Fluorescence decay times: proteins, coenzymes, and other compounds in water. Science 156(3777):949–951. doi: 10.1126/science.156.3777.949 CrossRefGoogle Scholar
  48. Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO (2009) Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9(3):1139–1146. doi: 10.1021/nl8036905 CrossRefGoogle Scholar
  49. Sakai T, Alexandridis P (2005) Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J Phys Chem B 109(16):7766–7777. doi: 10.1021/jp046221z CrossRefGoogle Scholar
  50. Scaiano JC, Aliaga C, Maguire S, Wang D (2006) Magnetic field control of photoinduced silver nanoparticle formation. J Phys Chem B 110(26):12856–12859. doi: 10.1021/jp061723t CrossRefGoogle Scholar
  51. Scaiano JC, Netto-Ferreira JC, Alarcon E, Billone P, Bueno Alejo CJ, Crites C-OL, Decan M, Fasciani C, González-Béjar M, Hallett-Tapley G, Grenier M, McGilvray KL, Pacioni NL, Pardoe A, René-Boisneuf L, Schwartz-Narbonne R, Silvero MJ, Stamplecoskie K, T-S W (2011) Tuning plasmon transitions and their applications in organic photochemistry. Pure Appl Chem 83(4):913–930. doi: 10.1351/PAC-CON-11-01-09 CrossRefGoogle Scholar
  52. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interf Sci 145(1–2):83–96. doi: 10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  53. Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JRJ (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9(42):5712–5720. doi: 10.1039/B709147H CrossRefGoogle Scholar
  54. Slocik JM, Tam F, Halas NJ, Naik RR (2007) Peptide-assembled optically responsive nanoparticle complexes. Nano Lett 7(4):1054–1058. doi: 10.1021/nl070267x CrossRefGoogle Scholar
  55. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. doi: 10.1016/0003-2697(85)90442-7 CrossRefGoogle Scholar
  56. Stamplecoskie KG, Scaiano JC (2010) Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc 132(6):1825–1827. doi: 10.1021/ja910010b CrossRefGoogle Scholar
  57. Stamplecoskie KG, Scaiano JC, Tiwari VS, Anis H (2011) Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J Phys Chem C 115(5):1403–1409. doi: 10.1021/jp106666t CrossRefGoogle Scholar
  58. Suh JS, Moskovits M (1986) Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. J Am Chem Soc 108(16):4711–4718. doi: 10.1021/ja00276a005 CrossRefGoogle Scholar
  59. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. doi: 10.1126/science.1077229 CrossRefGoogle Scholar
  60. Swift J, Butts CA, Cheung-Lau J, Yerubandi V, Dmochowski IJ (2009) Efficient self-assembly of archaeoglobus fulgidus ferritin around metallic cores. Langmuir 25(9):5219–5225. doi: 10.1021/la8040743 CrossRefGoogle Scholar
  61. Tran ML, Centeno SP, Hutchison JA, Engelkamp H, Liang D, Van Tendeloo G, Sels BF, Hofkens J, Uji-i H (2008) Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. J Am Chem Soc 130(51):17240–17241. doi: 10.1021/ja807218e CrossRefGoogle Scholar
  62. Triulzi RC, Dai Q, Zou J, Leblanc RM, Gu Q, Orbulescu J, Huo Q (2008) Photothermal ablation of amyloid aggregates by gold nanoparticles. Colloids Surf B 63(2):200–208. doi: 10.1016/j.colsurfb.2007.12.006 CrossRefGoogle Scholar
  63. Varner KE, El-Badawy A, Feldhake D, Venkatapathy R (2010) State-of-the-science review: everything nanosilver and more. U.S. Environmental Protection Agency, Washington, DC. EPA/600/R-10/084Google Scholar
  64. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Dess 15(23):2724–2750. doi: 10.2174/12724 CrossRefGoogle Scholar
  65. Wikler MA (2005) Performance standards for antimicrobial susceptibility testing : fifteenth informational supplement, vol 25. Clinical and Laboratory Standards Institute, Wayne Pa, USAGoogle Scholar
  66. Wu Q, Cao H, Luan Q, Zhang J, Wang Z, Warner JH, Watt AAR (2008) Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem 47(13):5882–5888. doi: 10.1021/ic8002228 CrossRefGoogle Scholar
  67. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta 1784(7–8):1020–1027. doi: 10.1016/j.bbapap.2008.03.018 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Emilio I. Alarcon
    • 1
  • Carlos J. Bueno-Alejo
    • 1
  • Christopher W. Noel
    • 1
  • Kevin G. Stamplecoskie
    • 1
  • Natalia L. Pacioni
    • 1
    • 3
  • Horacio Poblete
    • 2
  • J. C. Scaiano
    • 1
  1. 1.Department of ChemistryCentre for Catalysis Research and Innovation, University of OttawaOttawaCanada
  2. 2.Center for Bioinformatics and Molecular Simulations, Universidad de TalcaTalcaChile
  3. 3.INFIQC, Departamento de Química OrgánicaFacultad de Ciencias Químicas, Universidad Nacional de CórdobaCordobaArgentina

Personalised recommendations