Skip to main content

Thermally sensitive polypeptide-based copolymer for DNA complexation into stable nanosized polyplexes

Abstract

Gene therapy based on non-viral synthetic delivery vectors has attracted much attention in the past two decades. However, it is still in clinical trial stages, mainly due to the lack of safe and efficient delivery vehicles. Herein, we report on the synthesis and DNA complexation ability of novel, hybrid copolymer comprising poly(N-isopropylacrylamide) (PNIPAm) block with poly(ethylene glycol) (PEG) side chains and a polycationic block of poly(l-lysine) (PLLys). The copolymer was synthesized in a two-step procedure. In the first step, a thermally sensitive PNIPAm-g-PEG copolymer with terminal ammonium hydrochloride group was prepared. The second step involves controlled ring-opening polymerization of Z-l-lysine N-carboxyanhydride initiated by the PNIPAm-g-PEG macroinitiator. The hybrid copolymer obtained show high ability to condense DNA into stable polyplexes with sizes below 100 nm. Cytotoxicity evaluation of both hybrid copolymer and its polyplex with DNA indicates that it might be a good candidate for gene-delivery applications.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Baum C, Kustikova O, Modlich U, Li Z, Fehze B (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17:253–263

    Article  CAS  Google Scholar 

  • Check E (2002) Gene therapy: a tragic setback. Nature 420:116–118

    Article  CAS  Google Scholar 

  • Cho YW, Kim Y-D, Park K (2003) Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol 55:721–734

    Article  CAS  Google Scholar 

  • Choi YH, Liu F, Kim J-S, Choi YK, Park YS, Kim SW (1998) Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier. J Control Release 54:39–48

    Article  Google Scholar 

  • Dash PR, Read ML, Barrett LB, Wolfert MA, Seymour LW (1999) Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther 6:643–650

    Article  CAS  Google Scholar 

  • de Ilarduya CT, Sun Y, Düzgüneş N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170

    Article  Google Scholar 

  • Dimitrov I, Schlaad H (2003) Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerisation of N-carboxyanhydrides. Chem Commun 23:2944–2945

    Article  Google Scholar 

  • Dimitrov I, Berlinova I, Vladimirov N (2006) Synthesis of poly(oxyethylene)-poly(Z-l-lysine) hybrid graft copolymers. Macromolecules 39:2423–2426

    Article  CAS  Google Scholar 

  • Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov C (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    Article  CAS  Google Scholar 

  • Dimitrov I, Berlinova I, Iliev P, Vladimirov N (2008) Controlled synthesis of peptide-based amphiphilic copolymers. Macromolecules 41:1045–1049

    Article  CAS  Google Scholar 

  • Dimitrov I, Petrova E, Kozarova R, Apostolova M, Tsvetanov C (2011) A mild and versatile approach for DNA encapsulation. Soft Matter 7:8002–8004

    Article  CAS  Google Scholar 

  • Du F-S, Wang Y, Zhang R, Li Z-C (2010) Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 6:835–848

    Article  CAS  Google Scholar 

  • Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  • Grigsby CL, Leong KW (2010) Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J R Soc Interface 7:S67–S82

    Article  CAS  Google Scholar 

  • Grisham J (2000) Inquiry into gene therapy widens. Nat Biotechnol 18:254–255

    Article  CAS  Google Scholar 

  • Hinrichs WLJ, Schuurmans-Nieuwenbroek NME, van de Wetering P, Hennink WE (1999) Thermosensitive polymers as carriers for DNA delivery. J Control Release 60:249–259

    Article  CAS  Google Scholar 

  • Itaka K, Harada A, Nakamura K, Kawaguchi H, Kataoka K (2002) Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions. Biomacromolecules 3:841–845

    Article  CAS  Google Scholar 

  • Kakizawa Y, Kataoka K (2002) Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 54:203–222

    Article  CAS  Google Scholar 

  • Karmali PP, Chaudhuri A (2007) Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Med Res Rev 27:696–722

    Article  CAS  Google Scholar 

  • Kurisawa M, Yokoyama M, Okano T (2000) Gene expression control by temperature with thermo-responsive polymeric gene carriers. J Control Release 69:127–137

    Article  CAS  Google Scholar 

  • Lavigne MD, Pennadam SS, Ellis J, Yates LL, Alexander C, Górecki DC (2007) Enhanced gene expression through temperature profile-induced variations in molecular architecture of thermoresponsive polymer vectors. J Gene Med 9:44–54

    Article  CAS  Google Scholar 

  • LePecq J-B, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical–chemical characterization. J Mol Biol 27:87–106

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • O’Rorke S, Keeney M, Pandit A (2010) Non-viral polyplexes: scaffold mediated delivery for gene therapy. Prog Polym Sci 35:441–458

    Article  Google Scholar 

  • Oupický D, Reschel T, Koňak Č, Oupická L (2003) Temperature-controlled behavior of self-assembly gene delivery vectors based on complexes of DNA with poly(l-lysine)-graft-poly(N-isopropylacrylamide). Macromolecules 36:6863–6872

    Article  Google Scholar 

  • Poché D, Moore M, Bowles J (1999) An unconventional method for purifying the N-carboxyanhydride derivatives of γ-alkyl-l-glutamates. Synth Commun 29:843–854

    Article  Google Scholar 

  • Roques C, Fattal E, Fromes Y (2009) Comparison of toxicity and transfection efficiency of amphiphilic block copolymers and polycationic polymers in striated muscles. J Gene Med 11:240–249

    Article  CAS  Google Scholar 

  • Schaffer DV, Fidelman NA, Dan N, Lauffenburger DA (2000) Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol Bioeng 67:598–606

    Article  CAS  Google Scholar 

  • Shen Z, Shi B, Zhang H, Bi J, Dai S (2012) Exploring low-positively charged thermosensitive copolymers as gene delivery vectors. Soft Matter 8:1385–1394

    Article  CAS  Google Scholar 

  • Soliman M, Allen S, Davies MC, Alexander C (2010) Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem Commun 46:5421–5433

    Article  CAS  Google Scholar 

  • Trentin D, Hubbell J, Hall H (2005) Non-viral gene delivery for local and controlled DNA release. J Control Release 102:263–275

    Article  CAS  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (1998) Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug Chem 9:805–812

    Article  CAS  Google Scholar 

  • Wong SY, Pelet JM, Putnam D (2007) Polymer systems for gene delivery—past, present, and future. Prog Polym Sci 32:799–837

    Article  CAS  Google Scholar 

  • Zintchenko A, Ogris M, Wagner E (2006) Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjug Chem 17:766–772

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Bulgarian National Science Fund through a project “Ideas” DO 02-247/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivaylo Dimitrov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material (DOC 98 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ivanova, E., Dimitrov, I., Kozarova, R. et al. Thermally sensitive polypeptide-based copolymer for DNA complexation into stable nanosized polyplexes. J Nanopart Res 15, 1358 (2013). https://doi.org/10.1007/s11051-012-1358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1358-7

Keywords

  • DNA
  • Polyplexes
  • Stimuli-sensitive polymers
  • Synthesis