Analytical characterization of engineered ZnO nanoparticles relevant for hazard assessment

  • Adina Bragaru
  • Mihaela Kusko
  • Eugeniu Vasile
  • Monica Simion
  • Mihai Danila
  • Teodora Ignat
  • Iuliana Mihalache
  • Razvan Pascu
  • Florea Craciunoiu
Research Paper


The optoelectronic properties of zinc oxide nanoparticles (ZnO-NPs) have determined development of novel applications in catalysis, paints, wave filters, UV detectors, transparent conductive films, solar cells, or sunscreens. While the immediate advantages of using nano-ZnO in glass panel coatings and filter screens for lamps, as protecting products against bleaching, have been demonstrated, the potential environmental effect of the engineered NPs and the associated products was not fully estimated; this issue being of utmost importance, as these materials will be supplied to the market in quantities of tons per year, equating to thousands of square meters. In this study, ZnO-NPs with commercial name Zincox™ have been subjected to a comprehensive characterization, relevant for hazard assessment, using complementary physico-chemical methods. Therefore, the morphological investigations have been corroborated with XRD pattern analyses and UV–Vis absorption related properties resulting an excellent correlation between the geometrical sizes revealed by microscopy (8.0–9.0 nm), and, respectively, the crystallite size (8.2–9.5 nm) and optical size (7.8 nm) calculated from the last two techniques’ data. Furthermore, the hydrodynamic diameter of ZnO-NPs and stability of aqueous dispersions with different concentration of nanoparticles have been analyzed as function of significant solution parameters, like concentration, pH and solution ionic strength. The results suggest that solution chemistry exerts a strong influence on ZnO dissolution stability, the complete set of analyses providing useful information toward better control of dosage during biotoxicological tests.


ZnO Nanoparticles Size Hydrodynamic diameter Surface charge Dispersion stability 



The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 247989 (NanoSustain—Development of sustainable solutions for nanotechnology-based products based on hazard characterization and LCA). The authors want to thank to Dr. Adrian Dinescu and Veronica Schiopu for SEM and FT-IR characterizations.


  1. ASTM (2009) ASTM E2490-09, standard guide for measurement of particle size distribution of nanomaterials in suspension by photon correlation spectroscopy (PCS). ASTM International, West ConshohockenGoogle Scholar
  2. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712. doi: 10.1038/sj.jid.5700733 Google Scholar
  3. Berger LI (1997) Semiconductor materials. CRC Press, Boca RatonGoogle Scholar
  4. Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553. doi: 10.1007/s11051-005-4884-8 CrossRefGoogle Scholar
  5. Braun A, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger T (2011) Certification of equivalent spherical diameters of silica nanoparticles in water. ERM-FD100, Report EUR 24620 EN, European Union, Luxemburg. doi: 10.2787/33725
  6. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. doi: 10.1021/nl052326h CrossRefGoogle Scholar
  7. Brus LE (1992) Structure and electronic states of quantum semiconductor crystallites. Nanostruct Mater 1:71–75.  10.1016/0965-9773(92)90055-3 Google Scholar
  8. Buzea C, Blandino IIP, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17-MR172, arXiv:0801.3280v1Google Scholar
  9. Cheng S, Yan D, Chen JT, Zhuo RF, Feng JJ, Li HJ, Feng HT, Yan PX (2009) Soft-template synthesis and characterization of ZnO2 and ZnO hollow spheres. J Phys Chem C 113:13630–13635. doi: 10.1021/jp9036028 CrossRefGoogle Scholar
  10. Cho WS, Duffin R, Howie SEM, Scotton CJ, Wallace WAH, MacNee W, Bradley M, Megson IL, Donaldson K (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27–43. doi: 10.1186/1743-8977-8-27 CrossRefGoogle Scholar
  11. Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20(6):667–673.  10.1016/S0955-2219(99)00203-4 Google Scholar
  12. Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363. doi: 10(3109/17435390),2010,509519 CrossRefGoogle Scholar
  13. Geiser M, Schurch S, Gehr P (2003) Influence of surface chemistry and topography of particles on their immersion into the lung’s surface-lining layer. J Appl Physiol 94:1793–1803. doi: 10.1152/japplphysiol.00514.2002 Google Scholar
  14. Gurr JR, Wang ASS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73. doi: 10.1016/j.tox.2005.05.007 CrossRefGoogle Scholar
  15. Hunter RJ (1981) Zeta potential in colloid science. Principles and applications colloid science. Academic Press, LondonGoogle Scholar
  16. Isfort CS, Rochnia M (2009) Production and physico-chemical characterisation of nanoparticles. Toxicol Lett 186:148–151. doi: 10.1016/j.toxlet.2008.11.021 CrossRefGoogle Scholar
  17. ISO (1996) ISO 13321:1996, methods for determination of particle size distribution part 8: photon correlation spectroscopy. International Organization for Standardization, GenevaGoogle Scholar
  18. ISO (2008) ISO 22412:2008, particle size analysis–dynamic light scattering. International Organization for Standardization, GenevaGoogle Scholar
  19. Jiang J, Oberdorster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42.  10.1080/17435390701882478 Google Scholar
  20. Jiang J, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. doi: 10.1007/s11051-008-9446-4 CrossRefGoogle Scholar
  21. Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472. doi: 10.1093/toxsci/kfr319 CrossRefGoogle Scholar
  22. Kawabata K, Nanai Y, Kimura S, Okuno T (2012) Fabrication of ZnO nanoparticles by laser ablation of sintered ZnO in aqueous solution. Appl Phys A 107:213–220. doi: 10.1007/s00339-011-6745-x CrossRefGoogle Scholar
  23. Kim H, Gilmore CM, Horwitz JS, Pique A, Murata H, Kushto GP, Schlaf R, Kafafi ZH, Chrisey DB (2000) Transparent conducting aluminum-doped zinc oxide thin films for organic light emitting devices. Appl Phys Lett 76:259–262. doi: 10.1063/1.125740 CrossRefGoogle Scholar
  24. Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337:439–448. doi: 10.1016/j.jcis.2009.04.072 CrossRefGoogle Scholar
  25. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49. doi: 10.1002/smll.200700595 CrossRefGoogle Scholar
  26. Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39. doi: 10.1007/s11051-008-9419-7 CrossRefGoogle Scholar
  27. Linsinger T, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson P, Klein C (2012) Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial’. EUR Report 25404 EN, European Union, LuxemburgGoogle Scholar
  28. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single walled carbon nanotube material. J Toxicol Environ Health A 67:87–107. doi: 10.1080/15287390490253688 Google Scholar
  29. Milev AS, Kannangara GSK, Wilson MA (2004) Template-directed synthesis of hydroxyapatite from a lamellar phosphonate precursor. Langmuir 20:1888–1894. doi: 10.1021/la0355601. Google Scholar
  30. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384. doi: 10.1016/j.toxlet.2004.11.004 CrossRefGoogle Scholar
  31. Mudunkotuwa IA, Grassian VH (2010) Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral ph: surface coverage, surface speciation and its impact on nanoparticle–nanoparticle interactions. J Am Chem Soc 132:14986–14994. doi: 10.1021/ja106091q CrossRefGoogle Scholar
  32. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi: 10.1093/toxsci/kfm240 CrossRefGoogle Scholar
  33. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York, pp 130–131Google Scholar
  34. Nemmar A, Hoylaerts MF, Hoet PHM, Vermylen J, Nemery B (2003) Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 186:38–45. doi: 10.1016/S0041-008X(02)00024-8 CrossRefGoogle Scholar
  35. Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277. doi: 10.1080/10408440601177780 CrossRefGoogle Scholar
  36. Nunes P, Fernandes B, Fortunato E, Vilarinho P, Martins R (1999) Performance presented by ZnO thin films deposited by spray pyrolysis. Thin Solid Films 337:176–179.  10.1016/S0040-6090(98)01394-7 Google Scholar
  37. Oberdorster E (2004) Manufactured nanomaterials (fullerenes C60) induce oxidative stress in brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062. doi: 10.1289/ehp.7021 CrossRefGoogle Scholar
  38. Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25. doi: 10.1080/17435390701314761 CrossRefGoogle Scholar
  39. Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(S5):173–179. doi: 10.1289/ehp.94102s5173
  40. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi: 10.1289/ehp.7339 CrossRefGoogle Scholar
  41. Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo complex systems. Chem Rev 65:177–198. doi: 10.1021/cr60234a002 CrossRefGoogle Scholar
  42. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15. doi: 10.1016/j.jhazmat.2010.11.020 CrossRefGoogle Scholar
  43. Posgai R, Ahamed M, Hussain SM, Rowe JJ, Nielsen MG (2009) Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci Total Environ 408:439–443. doi: 10.1016/j.scitotenv.2009.10.008 CrossRefGoogle Scholar
  44. Reichle RA, McCurdy KG, Hepler LG (1975) Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5-75°C. Can J Chem 53:3841–3845. doi: 10.1139/v75-556 CrossRefGoogle Scholar
  45. Roebben G, Ramirez-Garcia S, Hackley VA, Roesslein M, Klaessig F, Kestens V, Lynch I, Garner CM, Rawle A et al (2011) Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J Nanopart Res 13:2675–2687. doi: 10.1007/s11051-011-0423-y CrossRefGoogle Scholar
  46. Sahoo T, Kim M, Baek JH et al (2011) Synthesis and characterization of porous ZnO nanoparticles by hydrothermal treatment of a pure aqueous precursor. Mater Res Bull 46:525–530. doi: 10.1016/j.materresbull.2011.01.002 CrossRefGoogle Scholar
  47. Scott K, Zhang Y, Wang R, Clearfield A (1995) Synthesis, characterization, and amine intercalation behavior of zinc phosphite phenylphosphonate mixed derivative. Chem Mater 7:1095–1105. doi: 10.1021/cm00054a008 CrossRefGoogle Scholar
  48. Simeonova PP, Erdely A (2009) Engineered nanoparticle respiratory exposure and potential risks for cardiovascular toxicity: predictive tests and biomarkers. Inhal Toxicol 21:68–73. doi: 10.1080/08958370902942566 CrossRefGoogle Scholar
  49. Singh C, Friedrichs S, Levin M, Birkedal R et al (2011) NM-series of representative manufactured nanomaterials—zinc oxide NM-110, NM-111, NM-112, NM-113 characterisation and test item preparation. EUR Report 25066 EN, European Union, Luxemburg. doi: 10.2787/55008
  50. Soosen SM, Lekshmi B, George KC (2009) Optical properties of ZnO nanoparticles. SB Acad Rev XVI(1–2):57–65.
  51. Steele A, Bayer I, Loth E (2009) Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett 9:501–505. doi: 10.1021/nl8037272 CrossRefGoogle Scholar
  52. Sung JH, Ji JH, Park JD, Song MY, Song KS, Ryu HR, Yoon JU, Jeon KS, Jeong J, Han BS et al (2011) Subchronic inhalation toxicity of gold nanoparticles. Part Fibre Toxicol 8:16–34. doi: 10.1186/1743-8977-8-16 CrossRefGoogle Scholar
  53. Suttiponparnit K, Jiang J, Sahu M, Suvachittnont S (2011) Role of surface area, primary particle size and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27–35. doi: 10.1007/s11671-010-9772-1 Google Scholar
  54. Swaminathan R, Iutzi R (2008) Synthesis and UV–Vis of quantum dots. Experiment, University of Waterloo, Nanotechnology Engineering, NE 320 L characterization of materials, Experiment Name and Number: #1 synthesis and UV–Vis of quantum dotsGoogle Scholar
  55. Tantra R, Schulze P, Quincey P (2010) Effect of nanoparticle concentration on zetapotential measurement results and reproductibility. Particuology 8:279–285.  10.1016/j.partic.2010.01.003 Google Scholar
  56. Tso CP, Zung CM, Shih YH, Tseng YM, Wu SC, Doong RA (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61(1):127–133. doi: 0.2166/wst.2010.787 CrossRefGoogle Scholar
  57. Wang RH, Xin JH, Tao XM (2005) UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics. Inorg Chem 44:3926–3930. doi: 10.1021/ic0503176 CrossRefGoogle Scholar
  58. Wilkinson KJ, Lead JR (eds) (2007) Environmental colloids and particles. In: Buffle J, van Leeuwen HP, (series eds) Behaviour, separation and characterization. IUPAC series in analytical and physical chemistry of environmental systems. Wiley, Chichester (2007)Google Scholar
  59. Yokel RA, MacPhail RC (2011) Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol 6:7–34. doi: 10.1186/1745-6673-6-7 CrossRefGoogle Scholar
  60. Yu TR (ed) (1997) Chemistry of variable charge soils. Oxford University Press, OxfordGoogle Scholar
  61. Zhang WJ, Miser DE (2006) Coalescence of oxide nanoparticles: in situ HRTEM observation. J Nanopart Res 8:1027–1032. doi: 10.1007/s11051-005-9056-3 CrossRefGoogle Scholar
  62. Zhang Y, Zhu F, Zhang J, Xia L (2008) Converting layered zinc acetate nanobelts to one-dimensional structured ZnO nanoparticle aggregates and their photocatalytic activity. Nanoscale Res Lett 3:201–204. doi: 10.1007/s11671-008-9136-2 CrossRefGoogle Scholar
  63. Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:2948–2956. doi: 10.1016/j.watres.2010.02.025 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Adina Bragaru
    • 1
  • Mihaela Kusko
    • 1
  • Eugeniu Vasile
    • 2
  • Monica Simion
    • 1
  • Mihai Danila
    • 1
  • Teodora Ignat
    • 1
  • Iuliana Mihalache
    • 1
  • Razvan Pascu
    • 1
  • Florea Craciunoiu
    • 1
  1. 1.Laboratory of NanobiotechnologyNational Institute for Research and Development in MicrotechnologiesBucharestRomania
  2. 2.SC METAV CDBucharestRomania

Personalised recommendations