Synthesis of fluorescent BSA–Au NCs for the detection of Hg2+ ions

  • Po-Cheng Chen
  • Cheng-Kang Chiang
  • Huan-Tsung Chang
Research Paper


In this study, we present a simple heating approach for preparation of gold nanoclusters (Au NCs) using bovine serum albumin (BSA) as a template. At 70 °C, the reaction for the preparation of BSA–Au NCs is completed within 20 min. By conducting matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), we have found that the main product is BSA–Au20 NCs that emit at 660 nm when excited at 330 nm due to “molecular-like” behavior. The X-ray photoelectron spectroscopy data reveal that there are Au+ ions and Au atoms coexisting in the BSA–Au NCs. The as-prepared Au NCs show excellent stability over a wide pH range (2.0–10.0). The fluorescence and MALDI-MS data reveal that the changes in their fluorescence properties are due to the formation of various sizes of BSA–Au NCs for different periods of reaction time. The as-prepared BSA–Au NCs are selective and sensitive (limit of detection of 4 nM at a signal-to noise ratio 3) for the detection of Hg2+ ions through the d10–d10 metallophilic interaction of Au+ and Hg2+ that leads to a decrease in fluorescence. The present assay has been validated for the detection of Hg2+ ions in real water samples, with a result being in good agreement with that from inductively coupled plasma mass spectrometry.


Gold nanoclusters Fluorescent MALDI-MS Mercury detection 



This study was supported by the National Science Council of Taiwan under contracts NSC 98-2113-M-002-011-MY3.

Supplementary material

11051_2012_1336_MOESM1_ESM.pdf (313 kb)
Supplementary material 1 (PDF 329 kb)


  1. Chaudhari K, Xavier PL, Pradeep T (2011) Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 5:8816–8827CrossRefGoogle Scholar
  2. Chen SW, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280:2098–2101CrossRefGoogle Scholar
  3. Choi SM, Yu JH, Patel SA, Tzeng YL, Dickson RM (2011) Tailoring silver nanodots for intracellular staining. Photochem Photobiol Sci 10:109–115CrossRefGoogle Scholar
  4. Dautigny A, Prager EM, Phamdinh D, Jolles J, Pakdel F, Grinde B, Jolles P (1991) cDNA and amino-acid-sequences of rainbow-trout (oncorhynchus-mykiss) lysozymes and their implications for the evolution of lysozyme and lactalbumin. J Mol Evol 32:187–198CrossRefGoogle Scholar
  5. Donkers RL, Lee D, Murray RW (2004) Synthesis and isolation of the molecule-like cluster Au38(PhCH2CH2S)24. Langmuir 20:1945–1952CrossRefGoogle Scholar
  6. Gu X, Ji M, Wei SH, Gong XG (2004) AuN clusters (N = 32,33,34,35): cagelike structures of pure metal atoms. Phys Rev B 70:205401CrossRefGoogle Scholar
  7. Hakkinen H, Barnett RN, Landman U (1999) Electronic structure of passivated Au38(SCH3)24 nanocrystal. Phys Rev Lett 82:3264–3267CrossRefGoogle Scholar
  8. Hirayama K, Akashi S, Furuya M, Fukuhara K (1990) Rapid confirmation and revision of the primary structure of bovine serum-albumin by ESIMS and Frit-FAB LC/MS. Biochem Biophys Res Commun 173:639–646CrossRefGoogle Scholar
  9. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed 46:6824–6828CrossRefGoogle Scholar
  10. Huang CC, Hung YL, Shiang YC, Lin TY, Lin YS, Chen CT, Chang HT (2010) Photoassisted synthesis of luminescent mannose-Au nanodots for the detection of thyroglobulin in serum. Chem-Asian J 5:334–341CrossRefGoogle Scholar
  11. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786CrossRefGoogle Scholar
  12. Jin LH, Shang L, Guo SJ, Fang YX, Wen D, Wang L, Yin JY, Dong SJ (2011) Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens Bioelectron 26:1965–1969CrossRefGoogle Scholar
  13. Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) pH-Dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 21:3508–3515CrossRefGoogle Scholar
  14. Lan GY, Chen WY, Chang HT (2011) Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence. RSC Adv 1:802–807CrossRefGoogle Scholar
  15. Le Guevel X, Hotzer B, Jung G, Hollemeyer K, Trouillet V, Schneider M (2011) Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J Phys Chem C 115:10955–10963CrossRefGoogle Scholar
  16. Li J, Li X, Zhai HJ, Wang LS (2003) Au20 : a tetrahedral cluster. Science 299:864–867CrossRefGoogle Scholar
  17. Li H-W, Ai K, Wu Y (2011) Fluorescence visual gel-separation of dansylated BSA-protected gold-nanoclusters. Chem Commun 47:9852–9854CrossRefGoogle Scholar
  18. Lin VJC, Koenig JL (1976) Raman studies of bovine serum-albumin. Biopolymers 15:203–218CrossRefGoogle Scholar
  19. Liu CW, Huang CC, Chang HT (2008) Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Langmuir 24:8346–8350CrossRefGoogle Scholar
  20. Liu CW, Huang CC, Chang HT (2009) Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal Chem 81:2383–2387CrossRefGoogle Scholar
  21. Liu YL, Ai KL, Cheng XL, Huo LH, Lu LH (2010) Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv Funct Mater 20:951–956CrossRefGoogle Scholar
  22. Liu HY, Zhang XA, Wu XM, Jiang LP, Burda C, Zhu JJ (2011) Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (II) sensing. Chem Commun 47:4237–4239CrossRefGoogle Scholar
  23. Mandal G, Bardhan M, Ganguly T (2010) Interaction of bovine serum albumin and albumin–gold nanoconjugates with l-aspartic acid. A spectroscopic approach. Colloids Surf, B 81:178–184CrossRefGoogle Scholar
  24. Muhammed MAH, Verma PK, Pal SK, Kumar RCA, Paul S, Omkumar RV, Pradeep T (2009) Bright, NIR-emitting Au23 from Au25: characterization and applications including biolabeling. Chem-Eur J 15:10110–10120CrossRefGoogle Scholar
  25. Muller HM, Catteruccia F, Vizioli J, DellaTorre A, Crisanti A (1995) Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp Parasitol 81:371–385CrossRefGoogle Scholar
  26. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261–5270CrossRefGoogle Scholar
  27. Pyykko P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43:4412–4456CrossRefGoogle Scholar
  28. Shang L, Dong SJ, Nienhaus GU (2011a) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6:401–418CrossRefGoogle Scholar
  29. Shang L, Dorlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011b) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3:2009–2014CrossRefGoogle Scholar
  30. Van Der Linden WE, Beers C (1974) Determination of the composition and the stability constants of complexes of mercury(II) with amino acids. Anal Chim Acta 68:143–154CrossRefGoogle Scholar
  31. Vogler A, Kunkely H (2001) Photoreactivity of gold complexes. Coord Chem Rev 219–221:489–507CrossRefGoogle Scholar
  32. Wang GL, Huang T, Murray RW, Menard L, Nuzzo RG (2005) Near-IR luminescence of monolayer-protected metal clusters. J Am Chem Soc 127:812–813CrossRefGoogle Scholar
  33. Wang YL, Chen JJ, Irudayaraj J (2011) Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano 5:9718–9725CrossRefGoogle Scholar
  34. Wei H, Wang ZD, Yang LM, Tian SL, Hou CJ, Lu Y (2010) Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 135:1406–1410CrossRefGoogle Scholar
  35. Wei H, Wang ZD, Zhang JO, House S, Gao YG, Yang LM, Robinson H, Tan LH, Xing H, Hou CJ, Robertson IM, Zuo JM, Lu Y (2011) Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat Nanotechnol 6:92–96CrossRefGoogle Scholar
  36. Wen F, Dong YH, Feng L, Wang S, Zhang SC, Zhang XR (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196CrossRefGoogle Scholar
  37. Wojcik DP, Godfrey ME, Christie D, Haley BE (2006) Mercury toxicity presenting as chronic fatigue, memory impairment and depression: diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting (1994–2006). Neuroendocrinol Lett 27:415–423Google Scholar
  38. Woo SLC, Beattie WG, Catterall JF, Dugaiczyk A, Staden R, Brownlee GG, Omalley BW (1981) Complete nucleotide-sequence of the chicken chromosomal ovalbumin gene and its biological significance. Biochemistry 20:6437–6446CrossRefGoogle Scholar
  39. Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573CrossRefGoogle Scholar
  40. Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T (2010) Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2:2769–2776CrossRefGoogle Scholar
  41. Xie JP, Zheng YG, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889CrossRefGoogle Scholar
  42. Xie JP, Zheng YG, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun 46:961–963CrossRefGoogle Scholar
  43. Yan L, Cai Y, Zheng B, Yuan H, Guo Y, Xiao D, Choi MMF (2012) Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem 22:1000–1005CrossRefGoogle Scholar
  44. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360CrossRefGoogle Scholar
  45. Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125:7780–7781CrossRefGoogle Scholar
  46. Zheng J, Zhang CW, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:077402-1–077402-4Google Scholar
  47. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409–431CrossRefGoogle Scholar
  48. Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold noparticles. Nanoscale 4:4073–4083CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Po-Cheng Chen
    • 1
  • Cheng-Kang Chiang
    • 1
  • Huan-Tsung Chang
    • 1
  1. 1.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations