Exploring the electronic structure of graphene quantum dots

  • Bikash Mandal
  • Sunandan Sarkar
  • Pranab Sarkar
Research Paper


We present results of our theoretical investigation on the electronic structure of graphene quantum dots (QDs). We show how the HOMO–LUMO gap can be engineered by changing their size and/or shape. We also explore the possibility of tuning the gap by functionalization with different organic groups. We find that the covalent functionalization shifts both the HOMO and LUMO energies without significantly changing the HOMO–LUMO gap. This has been explained by analysing the density of states of different functionalized graphene QDs. Our theoretical results agree well with those of the experiment on recently synthesized graphene QDs.


Graphene QDs Electronic structure Organic functionalization 



The financial support from DST, New Delhi[SR/NM/NS-49/2007] through research grant is gratefully acknowledged. Sunandan Sarkar and Bikash Mandal are grateful to CSIR, New Delhi for the award of Senior Research Fellowship (SRF) and Junior Research Fellowship (JRF), respectively.


  1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31): 13226–13239CrossRefGoogle Scholar
  2. Aradi B, Hourahine B, Fraunheim Th (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111(26): 5678–5684CrossRefGoogle Scholar
  3. Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8(12):4373–4379CrossRefGoogle Scholar
  4. Boukhvalov DW, Katsnelson MI (2009) Chemical functionalization of graphene. J Phys Condens Matter 21: 344205CrossRefGoogle Scholar
  5. Brus LE (1991) Quantum crystallites and nonlinear optics. Appl Phys A 53: 465–474CrossRefGoogle Scholar
  6. Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30: 475–521CrossRefGoogle Scholar
  7. El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5): 326–333CrossRefGoogle Scholar
  8. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Fraunheim Th, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58: 7260–7268CrossRefGoogle Scholar
  9. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6: 183–191CrossRefGoogle Scholar
  10. Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C (2010) Organic functionalisation of graphenes. Chem Commun 46: 1766CrossRefGoogle Scholar
  11. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7): 2834–2860CrossRefGoogle Scholar
  12. Katsnelson MI, Novoselov KS, Geim AK (2006) Chiral tunnelling and the Klein paradox in graphene. Nat Phys 2: 620–625CrossRefGoogle Scholar
  13. Li L-S, Yan X (2010) Colloidal graphene quantum dots. J Phys Chem Letts 1(17): 2572–2576CrossRefGoogle Scholar
  14. Liu L-H, Yan M (2011) Functionalization of pristine graphene with perfluorophenyl azides. J Mater Chem 21: 3273-3276CrossRefGoogle Scholar
  15. Niehaus Th, Suhai S, DellaSala F, Lugli P, Elstner M, Seifert G, Frauenheim Th (2001) Tight-binding approach to time-dependent density-functional response theory. Phys Rev B 63: 085108CrossRefGoogle Scholar
  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696): 666–669Google Scholar
  17. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci. 102(30): 10451–10453CrossRefGoogle Scholar
  18. Porezag D, Frauenheim Th, KÖhler Th, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys Rev B 51: 12947–12957CrossRefGoogle Scholar
  19. Schumacher S (2011) Photophysics of graphene quantum dots: insights from electronic structure calculations. Phys Rev B 83: 081417(R)Google Scholar
  20. Seifert G, (2007) Tight-binding density functional theory: an approximate Kohn–Sham DFT scheme. J Phys Chem A 111: 5609CrossRefGoogle Scholar
  21. Singh AK, Penev ES, Yakobson BI (2010) Vacancy clusters in graphane as quantum dots. ACS Nano 4: 3510–3514CrossRefGoogle Scholar
  22. Voznyy O, Güclü AD, Potasz P, Hawrylak P (2011) Effect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edges. Phys Rev B 83:165417CrossRefGoogle Scholar
  23. Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17): 5944–5945CrossRefGoogle Scholar
  24. Yan X, Cui X, Li B, Li L-S (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Letts 10(5): 1869–1873CrossRefGoogle Scholar
  25. Yan X, Li L-S (2011) Solution-chemistry approach to graphene nanostructures. J Mater Chem 21: 3295–3300CrossRefGoogle Scholar
  26. Yan X, Li B, Cui X, Wei Q, Tajima K, Li L-S (2011) Independent tuning of the band gap and redox potential of graphene quantum dots. J Phys Chem Letts 2(10): 1119–1124CrossRefGoogle Scholar
  27. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nat Lond 438:201–204CrossRefGoogle Scholar
  28. Zhang ZZ, Chang K, Peeters FM (2008) Tuning of energy levels and optical properties of graphene quantum dots. Phys Rev B 77: 235411–235415CrossRefGoogle Scholar
  29. Zhong X, Jin J, Li S, Niu Z, Hu W, Li R, Ma J, (2010) Aryne cycloaddition: highly efficient chemical modification of graphene. Chem Commun 46: 7340–7342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of ChemistryVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations