CuO/Ta2O5 core/shell nanoparticles synthesized in immersed arc-discharge: production conditions and dielectric response

  • P. K. Karahaliou
  • P. Svarnas
  • S. N. Georga
  • N. I. Xanthopoulos
  • D. Delaportas
  • C. A. Krontiras
  • I. Alexandrou
Research Paper


We reported recently on a novel nanostructured material produced by the arc-discharge in water method, and extended studies were realized to identify the nature of this material, i.e., CuO/Ta2O5 core/shell crystalline nanoparticles (NPs). As a continuation of this investigation on the possibility of complex NP synthesis using immersed arc-discharge, the production conditions of the CuO/Ta2O5 NPs are herein presented in detail and the electrical properties of the nanopowder are examined comprehensively. The discharge is thus probed in situ by electrical measurements, optical emission spectroscopy and high speed imaging, and the electrical behavior of the NPs is considered by means of broadband dielectric spectroscopy. This combined study provides an integrated characterization of this new material, unveils its potential applications, and makes available suggestions on the process control.


Core/shell nanoparticles Immersed arc-discharge Broadband dielectric spectroscopy 


  1. Ashkarran AA (2011) Metal and metal oxides nanostructures prepared by electrical arc discharge method in liquids. J Clust Sci 22:233–266CrossRefGoogle Scholar
  2. Bhushan B (2004) Introduction to nanotechnology. In: Bhushan B (ed) Handbook of nanotechnology. Springer, Heidelberg, pp 1–6CrossRefGoogle Scholar
  3. Böttcher CJF, Bordewijk P (1978) Theory of electric polarization. Elsevier, AmsterdamGoogle Scholar
  4. Delaportas D, Svarnas P, Alexandrou I, Siokou A, Black K, Bradley JW (2009) γ-Al2O3 nanoparticle production by arc-discharge in water: in situ discharge characterization and nanoparticle investigation. J Phys D 42(24):5204 11 ppCrossRefGoogle Scholar
  5. Delaportas D, Svarnas P, Alexandrou I (2010) Ta2O5 crystalline nanoparticle synthesis by DC anodic arc in water. J Electrochem Soc 157(6):K138–K143CrossRefGoogle Scholar
  6. Delaportas D, Svarnas P, Alexandrou I, Hall S (2011a) Plasma of arc discharge in water for the formation of diverse nanostructures dependent on the anode material. IEEE Trans Plasma Sci 39(11):2628–2629CrossRefGoogle Scholar
  7. Delaportas D, Svarnas P, Alexandrou I, Georga SN, Krontiras CA, Xanthopoulos NI, Siokou A, Chalker PR (2011b) CuO/Ta2O5 core/shell nanoparticles produced by arc-discharge in water. Mater Lett 65:2337–2340CrossRefGoogle Scholar
  8. Fontanella JJ, Wintersgill MC, Edmondson CA, Lomax JF (2009) Water-associated dielectric relaxation in oxide nanoparticles. J Phys D 42:042003CrossRefGoogle Scholar
  9. Gutsch A, Krämer M, Michael G, Mühlenweg H, Pridöhl M, Zimmermann G (2002) Gas-phase production of nanoparticles. Kona 20:24–37Google Scholar
  10. Kontos GA, Soulintzis AL, Karahaliou PK, Psarras GC, Georga SN, Krontiras CA, Pisanias MN (2007) Electrical relaxation dynamics in TiO(2)—polymer matrix composites. Express Polym Lett 1:781–789CrossRefGoogle Scholar
  11. Kremer F, Schönhals A (2003) Analysis of dielectric spectra. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, HeidelbergCrossRefGoogle Scholar
  12. Lin Y, Jiang L, Zhao R, Liu G, Nan C-W (2005) Preparation of core/shell structured NiO-based ceramics and their dielectric properties. J Phys D 38:1615CrossRefGoogle Scholar
  13. Mpoukouvalas K, Wang J, Wegner G (2010) Conductivity of poly(pyrrole)-poly(styrene sulfonate) core-shell nanoparticles analyzed by impedance spectroscopy: effect of alkali counter ions. Chem Phys Chem 11:139–148CrossRefGoogle Scholar
  14. Nasser E (1971) Fundamentals of gaseous ionization and plasma electronics. Wiley-Interscience, New York, p 189Google Scholar
  15. Neagu E, Pissis P, Apekis L (2000) Electrical conductivity effects in polyethylene terephthalate films. J Appl Phys 87:2914CrossRefGoogle Scholar
  16. Patel HK, Martin SW (1992) Fast ionic conduction in Na2S + B2S3 glasses: compositional contributions to nonexponentiality in conductivity relaxation in the extreme low-alkali-metal limit. Phys Rev B 45:10292CrossRefGoogle Scholar
  17. Pissis P, Anagnostopoulou-Konsta A, Apekis L, Daoukaki-Diamanti D, Christodoulides C (1991) Dielectric effects of water in water-containing systems. J Non Cryst Solids 131–133:1174–1181CrossRefGoogle Scholar
  18. Psarras GC (2010) Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai Y-W (eds) Physical properties and applications of polymer nanocomposites. Woodhead Publishing Limited, OxfordGoogle Scholar
  19. Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2007) Relaxation phenomena in rubber/layered silicate nanocomposites. Express Polym Lett 1:837–845CrossRefGoogle Scholar
  20. Psarras GC, Siengchin S, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2011) Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polym Int 60:1715–1721CrossRefGoogle Scholar
  21. Raiser YuP (1997) Gas discharge physics. Springer, Berlin, p 245Google Scholar
  22. Shukla D, Mehra A (2006) Modeling shell formation in core-shell nanocrystals in reverse micelle systems. Langmuir 22(23):9500–9506CrossRefGoogle Scholar
  23. Spanoudaki A, Albela B, Bonneviot L, Peyrard M (2005) The dynamics of water in nanoporous silica studied by dielectric spectroscopy. Eur Phys J E 17:21–27CrossRefGoogle Scholar
  24. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027–2037CrossRefGoogle Scholar
  25. Vassilikou-Dova A, Kalogeras IM (2009) Dielectric analysis (DEA). In: Menczel JD, Bruce PR (eds) Thermal analysis of polymers, fundamentals and applications. Wiley, HobokenGoogle Scholar
  26. Xu P, Zhang X (2011) Investigation of MWS polarization and dc conductivity in polyamide 610 using dielectric relaxation spectroscopy. Eur Polym J 47:1031–1038CrossRefGoogle Scholar
  27. Zhang C, Stevens GC (2008) The dielectric response of polar and non-polar nanodielectrics. IEEE Trans Dielectr Electr Insul 15:606–617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • P. K. Karahaliou
    • 1
  • P. Svarnas
    • 2
  • S. N. Georga
    • 1
  • N. I. Xanthopoulos
    • 1
  • D. Delaportas
    • 3
  • C. A. Krontiras
    • 1
  • I. Alexandrou
    • 4
  1. 1.Physics DepartmentUniversity of PatrasRionGreece
  2. 2.Division of Electric Power Systems, High Voltage Laboratory, Electrical and Computer Engineering DepartmentUniversity of PatrasRionGreece
  3. 3.Department of Electrical Engineering and Electronics, Group of Technological PlasmasUniversity of LiverpoolBrownlow HillUK
  4. 4.FEI CompanyEindhovenNetherlands

Personalised recommendations