Skip to main content
Log in

CuO/Ta2O5 core/shell nanoparticles synthesized in immersed arc-discharge: production conditions and dielectric response

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We reported recently on a novel nanostructured material produced by the arc-discharge in water method, and extended studies were realized to identify the nature of this material, i.e., CuO/Ta2O5 core/shell crystalline nanoparticles (NPs). As a continuation of this investigation on the possibility of complex NP synthesis using immersed arc-discharge, the production conditions of the CuO/Ta2O5 NPs are herein presented in detail and the electrical properties of the nanopowder are examined comprehensively. The discharge is thus probed in situ by electrical measurements, optical emission spectroscopy and high speed imaging, and the electrical behavior of the NPs is considered by means of broadband dielectric spectroscopy. This combined study provides an integrated characterization of this new material, unveils its potential applications, and makes available suggestions on the process control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashkarran AA (2011) Metal and metal oxides nanostructures prepared by electrical arc discharge method in liquids. J Clust Sci 22:233–266

    Article  CAS  Google Scholar 

  • Bhushan B (2004) Introduction to nanotechnology. In: Bhushan B (ed) Handbook of nanotechnology. Springer, Heidelberg, pp 1–6

    Chapter  Google Scholar 

  • Böttcher CJF, Bordewijk P (1978) Theory of electric polarization. Elsevier, Amsterdam

    Google Scholar 

  • Delaportas D, Svarnas P, Alexandrou I, Siokou A, Black K, Bradley JW (2009) γ-Al2O3 nanoparticle production by arc-discharge in water: in situ discharge characterization and nanoparticle investigation. J Phys D 42(24):5204 11 pp

    Article  Google Scholar 

  • Delaportas D, Svarnas P, Alexandrou I (2010) Ta2O5 crystalline nanoparticle synthesis by DC anodic arc in water. J Electrochem Soc 157(6):K138–K143

    Article  CAS  Google Scholar 

  • Delaportas D, Svarnas P, Alexandrou I, Hall S (2011a) Plasma of arc discharge in water for the formation of diverse nanostructures dependent on the anode material. IEEE Trans Plasma Sci 39(11):2628–2629

    Article  CAS  Google Scholar 

  • Delaportas D, Svarnas P, Alexandrou I, Georga SN, Krontiras CA, Xanthopoulos NI, Siokou A, Chalker PR (2011b) CuO/Ta2O5 core/shell nanoparticles produced by arc-discharge in water. Mater Lett 65:2337–2340

    Article  CAS  Google Scholar 

  • Fontanella JJ, Wintersgill MC, Edmondson CA, Lomax JF (2009) Water-associated dielectric relaxation in oxide nanoparticles. J Phys D 42:042003

    Article  Google Scholar 

  • Gutsch A, Krämer M, Michael G, Mühlenweg H, Pridöhl M, Zimmermann G (2002) Gas-phase production of nanoparticles. Kona 20:24–37

    CAS  Google Scholar 

  • Kontos GA, Soulintzis AL, Karahaliou PK, Psarras GC, Georga SN, Krontiras CA, Pisanias MN (2007) Electrical relaxation dynamics in TiO(2)—polymer matrix composites. Express Polym Lett 1:781–789

    Article  CAS  Google Scholar 

  • Kremer F, Schönhals A (2003) Analysis of dielectric spectra. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Heidelberg

    Chapter  Google Scholar 

  • Lin Y, Jiang L, Zhao R, Liu G, Nan C-W (2005) Preparation of core/shell structured NiO-based ceramics and their dielectric properties. J Phys D 38:1615

    Article  CAS  Google Scholar 

  • Mpoukouvalas K, Wang J, Wegner G (2010) Conductivity of poly(pyrrole)-poly(styrene sulfonate) core-shell nanoparticles analyzed by impedance spectroscopy: effect of alkali counter ions. Chem Phys Chem 11:139–148

    Article  CAS  Google Scholar 

  • Nasser E (1971) Fundamentals of gaseous ionization and plasma electronics. Wiley-Interscience, New York, p 189

    Google Scholar 

  • Neagu E, Pissis P, Apekis L (2000) Electrical conductivity effects in polyethylene terephthalate films. J Appl Phys 87:2914

    Article  CAS  Google Scholar 

  • NIST (2012). http://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed 31 Oct 2011

  • Patel HK, Martin SW (1992) Fast ionic conduction in Na2S + B2S3 glasses: compositional contributions to nonexponentiality in conductivity relaxation in the extreme low-alkali-metal limit. Phys Rev B 45:10292

    Article  CAS  Google Scholar 

  • Pissis P, Anagnostopoulou-Konsta A, Apekis L, Daoukaki-Diamanti D, Christodoulides C (1991) Dielectric effects of water in water-containing systems. J Non Cryst Solids 131–133:1174–1181

    Article  Google Scholar 

  • Psarras GC (2010) Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai Y-W (eds) Physical properties and applications of polymer nanocomposites. Woodhead Publishing Limited, Oxford

    Google Scholar 

  • Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2007) Relaxation phenomena in rubber/layered silicate nanocomposites. Express Polym Lett 1:837–845

    Article  CAS  Google Scholar 

  • Psarras GC, Siengchin S, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2011) Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polym Int 60:1715–1721

    Article  CAS  Google Scholar 

  • Raiser YuP (1997) Gas discharge physics. Springer, Berlin, p 245

    Google Scholar 

  • Shukla D, Mehra A (2006) Modeling shell formation in core-shell nanocrystals in reverse micelle systems. Langmuir 22(23):9500–9506

    Article  CAS  Google Scholar 

  • Spanoudaki A, Albela B, Bonneviot L, Peyrard M (2005) The dynamics of water in nanoporous silica studied by dielectric spectroscopy. Eur Phys J E 17:21–27

    Article  CAS  Google Scholar 

  • Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027–2037

    Article  CAS  Google Scholar 

  • Vassilikou-Dova A, Kalogeras IM (2009) Dielectric analysis (DEA). In: Menczel JD, Bruce PR (eds) Thermal analysis of polymers, fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  • Xu P, Zhang X (2011) Investigation of MWS polarization and dc conductivity in polyamide 610 using dielectric relaxation spectroscopy. Eur Polym J 47:1031–1038

    Article  CAS  Google Scholar 

  • Zhang C, Stevens GC (2008) The dielectric response of polar and non-polar nanodielectrics. IEEE Trans Dielectr Electr Insul 15:606–617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Svarnas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karahaliou, P.K., Svarnas, P., Georga, S.N. et al. CuO/Ta2O5 core/shell nanoparticles synthesized in immersed arc-discharge: production conditions and dielectric response. J Nanopart Res 14, 1297 (2012). https://doi.org/10.1007/s11051-012-1297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1297-3

Keywords

Navigation