Skip to main content
Log in

A new method of preparation of AgBr/TiO2 composites and investigation of their photocatalytic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver bromide/titanium dioxide composites were first prepared using titanic acid nanobelts (TAN) as the TiO2 source. First, TAN reacted with AgNO3 to prepare Ag-incorporated TAN by the ion-exchange method, and then AgBr/TAN was obtained after adding NaBr. Finally, AgBr/TAN was transformed to AgBr/TiO2 composites by calcination. The post-treated calcination would not only convert TAN to TiO2 (H2Ti2O4(OH)2 → 2H2O + 2TiO2), but also increase the effective contact between AgBr and TiO2, further to improve the separation of photo-generated electron-holes. The advantage of this preparation method is the small particle size (ca. 10–20 nm) and well dispersion of AgBr on the surface of TiO2, and close contact between AgBr and TiO2. The effect of the different calcination temperature on the morphology, structure, and properties of AgBr/TiO2 composites was investigated in detail. The AgBr/TiO2 composites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and ultraviolet–visible diffuse reflectance spectra (UV–Vis DRS). Comparing with pure TAN, AgBr, and AgBr/P25 mixture, the AgBr/TiO2 composites exhibited enhanced photocatalytic activity in decomposition of methyl orange (MO) under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An C, Peng S, Sun Y (2010) Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst. Adv Mater 22:2570–2574

    Article  CAS  Google Scholar 

  • Bi Y, Ye J (2010a) Direct conversion of commercial silver foils into high aspect ratio AgBr nanowires with enhanced photocatalytic properties. Chem Eur J 16:10327–10331

    Article  CAS  Google Scholar 

  • Bi Y, Ye J (2010b) In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties. Chem Commun 43:6551–6553

    Google Scholar 

  • Chen S, Yang Y, Liu W (2011) Preparation, characterization, and activity evaluation of TiN/F-TiO2 photocatalyst. J Hazard Mater 186:1560–1567

    Article  CAS  Google Scholar 

  • Dvoranova D, Brezova V, Mazura M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B: Environ 37:91–105

    Article  CAS  Google Scholar 

  • Elahifard MR, Gholami MR (2012) Acid blue 92 photocatalytic degradation in the presence of scavengers by two types photocatalyst. Environ Pro Sustain Energy 31:371–378

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072

    Article  CAS  Google Scholar 

  • Li Q, Lu G (2007) Visible light driven photocatalytic hydrogen generation on Eosin Y-sensitized Pt-loaded nanotube Na2Ti2O4(OH)2. J Mol Catal A: Chem 266:75–79

    Article  CAS  Google Scholar 

  • Li Q, Wang X, Jin Z, Yang D, Zhang S, Guo X, Yang J, Zhang Z (2007) n/p-Type changeable semiconductor TiO2 prepared from NTA. J Nanopart Res 9:951–957

    Article  CAS  Google Scholar 

  • Li Q, Kako T, Ye J (2010a) Strong adsorption and effective photocatalytic activities of one-dimensional nano-structured silver titanates. Appl Catal A: Gen 375:85–91

    Article  CAS  Google Scholar 

  • Li Q, Kako T, Ye J (2010b) PbS/CdS nanocrystal-sensitized titanate network films: enhanced photocatalytic activities and super-amphiphilicity. J Mater Chem 20:10187–10192

    Article  CAS  Google Scholar 

  • Li F, Yin X, Yao M, Li J (2011) Investigation on F-B-S tri-doped nano-TiO2 films for the photocatalytic degradation of organic dyes. J Nanopart Res 13:4839–4846

    Article  Google Scholar 

  • Liu J, Yu Y, Liu Z, Zuo S, Li B (2012) AgBr-coupled TiO2: a visible heterostructured photocatalyst for degrading dye pollutants. Int J Photoenergy. doi:10.1155/2012/254201

    Google Scholar 

  • Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  CAS  Google Scholar 

  • Pourahmad A, Sohrabnezhad S, Kashefian E (2010) AgBr/nanoAlMCM-41 visible light photocatalyst for degradation of methylene blue dye. Spectrochim Acta A 77:1108–1114

    Article  CAS  Google Scholar 

  • Velmurugan R, Sreedhar B, Swaminathan M (2011) Nanostructured AgBr loaded TiO2: an efficient sunlight active photocatalyst for degradation of Reactive Red 120. Chem Cent J 5:46

    Article  Google Scholar 

  • Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo MH (2009a) Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem Eur J 15:1821–1824

    Article  CAS  Google Scholar 

  • Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo MH (2009b) Ag/AgBr/WO3 H2O:visible-light photocatalyst for bacteria destruction. Inorg Chem 48:10697–40702

    Article  CAS  Google Scholar 

  • Wang P, Huang B, Lou Z, Zhang X, Qin X, Dai Y, Zheng Z, Wang X (2010a) Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. Chem Eur J 16:538–544

    Article  CAS  Google Scholar 

  • Wang P, Huang B, Zhang Q, Zhang X, Qin X, Dai Y, Zhan J, Yu J, Liu H, Lou Z (2010b) Highly efficient visible light plasmonic photocatalyst Ag@Ag (Br, I). Chem Eur J 16:10042–10047

    Article  CAS  Google Scholar 

  • Wang D, Xiao L, Luo Q, Li X, An J, Duan Y (2011) Highly efficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatures lower than 300 °C. J Hazard Mater 192:150–159

    Article  CAS  Google Scholar 

  • Wang D, Duan Y, Luo Q, Li X, An J, Bao L, Shi L (2012) Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr. J Mater Chem 22:4847–4854

    Article  CAS  Google Scholar 

  • Wu N, Wang J, Tafen DN, Wang H, Zheng J, Lewis JP, Liu X, Leonard SS, Manivannan A (2010) Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J Am Chem Soc 132:6679–6685

    Article  CAS  Google Scholar 

  • Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans 20:3898–3901

    Article  Google Scholar 

  • Zang Y, Farnood R (2008) Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation. Appl Catal B: Environ 79:334–340

    Article  CAS  Google Scholar 

  • Zhang L, Wong K, Chen Z, Yu J, Zhao J, Hu C, Chan C, Wong P (2009) AgBr-Ag-Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components. Appl Catal A: Gen 363:221–229

    Article  CAS  Google Scholar 

  • Zhou X, Hu C, Hu X, Peng T, Qu J (2010) Plasmon-assisted degradation of toxic pollutants with Ag–AgBr/Al2O3 under visible-light irradiation. J Phys Chem C 114:2746–2750

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21103042), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20114103120001), and the Scientific Research Foundation of Henan University (No. 2010YBZR013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuye Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y., Li, R., Li, Q. et al. A new method of preparation of AgBr/TiO2 composites and investigation of their photocatalytic activity. J Nanopart Res 14, 1284 (2012). https://doi.org/10.1007/s11051-012-1284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1284-8

Keywords

Navigation