Advertisement

A new method of preparation of AgBr/TiO2 composites and investigation of their photocatalytic activity

  • Yangyang Xing
  • Rui Li
  • Qiuye Li
  • Jianjun Yang
Research Paper

Abstract

Silver bromide/titanium dioxide composites were first prepared using titanic acid nanobelts (TAN) as the TiO2 source. First, TAN reacted with AgNO3 to prepare Ag-incorporated TAN by the ion-exchange method, and then AgBr/TAN was obtained after adding NaBr. Finally, AgBr/TAN was transformed to AgBr/TiO2 composites by calcination. The post-treated calcination would not only convert TAN to TiO2 (H2Ti2O4(OH)2 → 2H2O + 2TiO2), but also increase the effective contact between AgBr and TiO2, further to improve the separation of photo-generated electron-holes. The advantage of this preparation method is the small particle size (ca. 10–20 nm) and well dispersion of AgBr on the surface of TiO2, and close contact between AgBr and TiO2. The effect of the different calcination temperature on the morphology, structure, and properties of AgBr/TiO2 composites was investigated in detail. The AgBr/TiO2 composites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and ultraviolet–visible diffuse reflectance spectra (UV–Vis DRS). Comparing with pure TAN, AgBr, and AgBr/P25 mixture, the AgBr/TiO2 composites exhibited enhanced photocatalytic activity in decomposition of methyl orange (MO) under visible light irradiation.

Keywords

AgBr/TiO2 nanocomposites Titanic acid nanobelts Photocatalysis Visible light 

Notes

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21103042), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20114103120001), and the Scientific Research Foundation of Henan University (No. 2010YBZR013).

References

  1. An C, Peng S, Sun Y (2010) Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst. Adv Mater 22:2570–2574CrossRefGoogle Scholar
  2. Bi Y, Ye J (2010a) Direct conversion of commercial silver foils into high aspect ratio AgBr nanowires with enhanced photocatalytic properties. Chem Eur J 16:10327–10331CrossRefGoogle Scholar
  3. Bi Y, Ye J (2010b) In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties. Chem Commun 43:6551–6553Google Scholar
  4. Chen S, Yang Y, Liu W (2011) Preparation, characterization, and activity evaluation of TiN/F-TiO2 photocatalyst. J Hazard Mater 186:1560–1567CrossRefGoogle Scholar
  5. Dvoranova D, Brezova V, Mazura M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B: Environ 37:91–105CrossRefGoogle Scholar
  6. Elahifard MR, Gholami MR (2012) Acid blue 92 photocatalytic degradation in the presence of scavengers by two types photocatalyst. Environ Pro Sustain Energy 31:371–378CrossRefGoogle Scholar
  7. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  8. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072CrossRefGoogle Scholar
  9. Li Q, Lu G (2007) Visible light driven photocatalytic hydrogen generation on Eosin Y-sensitized Pt-loaded nanotube Na2Ti2O4(OH)2. J Mol Catal A: Chem 266:75–79CrossRefGoogle Scholar
  10. Li Q, Wang X, Jin Z, Yang D, Zhang S, Guo X, Yang J, Zhang Z (2007) n/p-Type changeable semiconductor TiO2 prepared from NTA. J Nanopart Res 9:951–957CrossRefGoogle Scholar
  11. Li Q, Kako T, Ye J (2010a) Strong adsorption and effective photocatalytic activities of one-dimensional nano-structured silver titanates. Appl Catal A: Gen 375:85–91CrossRefGoogle Scholar
  12. Li Q, Kako T, Ye J (2010b) PbS/CdS nanocrystal-sensitized titanate network films: enhanced photocatalytic activities and super-amphiphilicity. J Mater Chem 20:10187–10192CrossRefGoogle Scholar
  13. Li F, Yin X, Yao M, Li J (2011) Investigation on F-B-S tri-doped nano-TiO2 films for the photocatalytic degradation of organic dyes. J Nanopart Res 13:4839–4846CrossRefGoogle Scholar
  14. Liu J, Yu Y, Liu Z, Zuo S, Li B (2012) AgBr-coupled TiO2: a visible heterostructured photocatalyst for degrading dye pollutants. Int J Photoenergy. doi: 10.1155/2012/254201 Google Scholar
  15. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with aspect ratios for efficient solar water splitting. Nano Lett 6:24–28CrossRefGoogle Scholar
  16. Pourahmad A, Sohrabnezhad S, Kashefian E (2010) AgBr/nanoAlMCM-41 visible light photocatalyst for degradation of methylene blue dye. Spectrochim Acta A 77:1108–1114CrossRefGoogle Scholar
  17. Velmurugan R, Sreedhar B, Swaminathan M (2011) Nanostructured AgBr loaded TiO2: an efficient sunlight active photocatalyst for degradation of Reactive Red 120. Chem Cent J 5:46CrossRefGoogle Scholar
  18. Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo MH (2009a) Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem Eur J 15:1821–1824CrossRefGoogle Scholar
  19. Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo MH (2009b) Ag/AgBr/WO3 H2O:visible-light photocatalyst for bacteria destruction. Inorg Chem 48:10697–40702CrossRefGoogle Scholar
  20. Wang P, Huang B, Lou Z, Zhang X, Qin X, Dai Y, Zheng Z, Wang X (2010a) Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. Chem Eur J 16:538–544CrossRefGoogle Scholar
  21. Wang P, Huang B, Zhang Q, Zhang X, Qin X, Dai Y, Zhan J, Yu J, Liu H, Lou Z (2010b) Highly efficient visible light plasmonic photocatalyst Ag@Ag (Br, I). Chem Eur J 16:10042–10047CrossRefGoogle Scholar
  22. Wang D, Xiao L, Luo Q, Li X, An J, Duan Y (2011) Highly efficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatures lower than 300 °C. J Hazard Mater 192:150–159CrossRefGoogle Scholar
  23. Wang D, Duan Y, Luo Q, Li X, An J, Bao L, Shi L (2012) Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr. J Mater Chem 22:4847–4854CrossRefGoogle Scholar
  24. Wu N, Wang J, Tafen DN, Wang H, Zheng J, Lewis JP, Liu X, Leonard SS, Manivannan A (2010) Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J Am Chem Soc 132:6679–6685CrossRefGoogle Scholar
  25. Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans 20:3898–3901CrossRefGoogle Scholar
  26. Zang Y, Farnood R (2008) Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation. Appl Catal B: Environ 79:334–340CrossRefGoogle Scholar
  27. Zhang L, Wong K, Chen Z, Yu J, Zhao J, Hu C, Chan C, Wong P (2009) AgBr-Ag-Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components. Appl Catal A: Gen 363:221–229CrossRefGoogle Scholar
  28. Zhou X, Hu C, Hu X, Peng T, Qu J (2010) Plasmon-assisted degradation of toxic pollutants with Ag–AgBr/Al2O3 under visible-light irradiation. J Phys Chem C 114:2746–2750CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Key Laboratory for Special Functional MaterialsHenan UniversityKaifengChina

Personalised recommendations