Syntheses of micrometer-long Pt and Ag nanowires through SBA-15 templating

Research Paper


We synthesized Pt and Ag nanowires using a mesoporous silica, SBA-15, as templates. The obtained nanowires are a few micrometers (~4 μm) long and 7 nm in diameter. The nanowires are free from bundling and, thus, can be separated as single nanowires. The successful synthesis of such nanowires requires a few considerations. In general, SBA-15 has microchannels on the walls through which the mesopores are interconnected when synthesized at 100 °C or higher. We, therefore, synthesized SBA-15 at a low temperature (80 °C) to eliminate the microchannels. Impregnation of the metal precursors and reduction of them into metals forms metal particles outside the pores in addition to the desired metal nanowires inside the pores. Surface alkylation of SBA-15 prohibits the nucleation of metal on the external surface and exclusively forms the nanowires. Finally, the introduction of surface passivating agent, an alkylthiol, during the removal of the template keeps the nanowires from interacting with one another. The Pt and Ag nanowires so-synthesized were characterized by electron microscopy.


Nanowire Synthesis Template Mesoporous silica 



This study was supported by Grants NRF-2011-0031392 (Priority Research Center Program), NRF-2011-0006268 (Basic Science Research Program), and NRF-20090081018 (Basic Science Research Program). We thank KBSI and CCRF for the TEM data.


  1. Anwander R, Nagl I, Widenmeyer M (2000) Surface characterization and functionalization of MCM-41 silicas via silazane silylation. J Phys Chem B 104:3532–3544CrossRefGoogle Scholar
  2. Chen CS, Chen CC, Chen CT, Kao HM (2011) Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups. Chem Commun 47:2288–2290CrossRefGoogle Scholar
  3. Galarneau A, Cambon H, Renzo FD, Ryoo R, Choi M, Fajula F (2003) Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J Chem 27:73–79CrossRefGoogle Scholar
  4. Han YJ, Kim JM, Stucky GD (2000) Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem Mater 12:2068–2069CrossRefGoogle Scholar
  5. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287:1471–1473CrossRefGoogle Scholar
  6. Huang MH, Choudrey A, Yang P (2000) Ag nanowire formation within mesoporous silica. Chem Commun 1063–1064Google Scholar
  7. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13:113–116CrossRefGoogle Scholar
  8. Impéror-Clerc M, Davidson P, Davidson A (2000) Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J Am Chem Soc 122:11925–11933CrossRefGoogle Scholar
  9. Joo SH, Ryoo R, Kruk M, Jaroniec M (2002) Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates. J Phys Chem B 106:4640–4646CrossRefGoogle Scholar
  10. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713CrossRefGoogle Scholar
  11. Kim HS, Cho JP (2008) Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J Mater Chem 18:771–775CrossRefGoogle Scholar
  12. Kim DJ, Dunn BC, Cole P, Turpin G, Ernst RD, Pugmire RJ, Kang M, Kim JM, Eyring EM (2005) Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst. Chem Commun 1462–1464Google Scholar
  13. Kim KT, Kim MJ, Cho SM (2006) Pulsed electrodeposition of palladium nanowire arrays using AAO template. Mater Chem Phys 96:278–282CrossRefGoogle Scholar
  14. Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Characterization of the porous structure of SBA-15. Chem Mater 12:1961–1968CrossRefGoogle Scholar
  15. Li N, Yanagisawa K, Kumada N (2009) Facile hydrothermal synthesis of yttrium hydroxide nanowires. Cryst Growth Des 9:978–981CrossRefGoogle Scholar
  16. Liu Z, Zhang D, Han S, Li C, Tang T, Jin W, Liu X, Lei B, Zhou C (2003) Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv Mater 15:1754–1757CrossRefGoogle Scholar
  17. Mohl M, Pusztai P, Kukovecz A, Konya Z (2010) Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires. Langmuir 26:16496–16502CrossRefGoogle Scholar
  18. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211CrossRefGoogle Scholar
  19. Petkov N, Stock N, Bein T (2005) Gold electroless reduction in nanosized channels of thiol-modified SBA-15 material. J Phys Chem B 109:10737–10743CrossRefGoogle Scholar
  20. Protasova LN, Rebrov EV, Choy KL, Pung SY, Engels V, Cabaj M, Wheatley AEH, Schouten JC (2011) ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols. Catal Sci Technol 1:768–777CrossRefGoogle Scholar
  21. Shon JK, Kong SS, Kim JM, Ko CH, Jin M, Lee YY, Hwang SH, Yoon JA, Kim JN (2009a) Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. Chem Commun 650–652Google Scholar
  22. Shon JK, Kong SS, Kim YS, Lee JH, Park WK, Park SC, Kim JM (2009b) Solvent-free infiltration method for mesoporous SnO2 using mesoporous silica templates. Micropor Mesopor Mater 120:441–446CrossRefGoogle Scholar
  23. Sun J, Ma D, Zhang H, Liu X, Han X, Bao X, Weinberg G, Pfander N, Su D (2006) Toward monodispersed silver nanoparticles with unusual thermal stability. J Am Chem Soc 128:15756–15764CrossRefGoogle Scholar
  24. Wang S, Huang Q, Wen X, Li XY, Yang S (2002) Thermal oxidation of Cu2S nanowires: a template method for the fabrication of mesoscopic CuxO (x = 1,2) wires. Phys Chem Chem Phys 4:3425–3429CrossRefGoogle Scholar
  25. Worboys LM, Edwards PP, Anderson PA (2002) Silver nanowires: inclusion in and extrusion from a mesoporous template. Chem Commun 2894–2895Google Scholar
  26. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  27. Xiang B, Wang P, Zhang X, Dayeh SA, Aplin DPR, Soci C, Yu D, Wang D (2007) Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett 7:323–328CrossRefGoogle Scholar
  28. Zhang H, Ji Y, Ma X, Xu J, Yang D (2003) Long Bi2S3 nanowires prepared by a simple hydrothermal method. Nanotechnology 14:974–977CrossRefGoogle Scholar
  29. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  30. Zongtao Z, Bin Z, Liming H (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid Chem 121:105–110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Chemistry, BK-21 School of Chemical Materials SciencesSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations