Skip to main content
Log in

Flame synthesis of carbon nanostructures using mixed fuel in oxygen-enriched environment

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effects of key parameters, namely oxygen concentration, mixed fuel, and sampling positions, on the formation of carbon nano-onions (CNOs) and carbon nanotubes (CNTs) were investigated in oxy-fuel inverse diffusion flames. Particular focus was put on the intermediate species in connection with the synthesis of CNOs and CNTs. Three patterns of carbon nanostructures were observed: CNTs only, CNOs only, and CNTs/CNOs cogeneration. An appropriate temperature range in the synthesis of CNTs was identified to lie between 400 and 1,000 °C, whereas the temperature range for the synthesis of CNOs was higher, within 800–1,250 °C. A threshold value of oxygen concentration, 30 %, existed for onset of CNO synthesis. Gas composition analysis indicated that no carbon nanomaterial was formed at low CO and C2H2 concentration as well as low substrate temperature (lower than 400 °C). Compared with the synthesis condition of CNTs only, the C2H2 concentration was higher for the onset of CNTs/CNOs cogeneration, whereas the CO concentration was maintained at the same level. Additionally, the critical C2H2 concentration for the onset of CNOs only was found to be 0.4 %. A large quantity of CNOs was observed for C2H2 concentration greater than 0.4 % and CO concentration greater than 4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cabioch T, Jaouen M, Thune E, Guérin P, Fayoux C, Denanot MF (2000) Carbon onions formation by high-dose carbon ion implantation into copper and silver. Surf Coat Tech 128(129):43–50

    Article  Google Scholar 

  • Chen XH, Deng FM, Wang JX, Yang HS, Wu GT, Zhang XB, Peng JC, Li WZ (2001) New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem Phys Lett 336:201–204

    Article  CAS  Google Scholar 

  • Chen XC, Wang H, He JH (2008) Synthesis of carbon nanotubes and nanospheres with controlled morphology using different catalyst precursors. Nanotechnology 19:325607

    Article  Google Scholar 

  • Choi M, Altman IS, Kim YJ, Pikhitsa PV, Lee S, Park GS, Jeong T, Yoo JB (2004) Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene. Adv Mater 16:1721–1725

    Article  CAS  Google Scholar 

  • Chung DH, Lin TH, Hou SS (2010) Flame synthesis of carbon nano-onions enhanced by acoustic modulation. Nanotechnology 21:435604

    Article  Google Scholar 

  • Collis DC, Williams MJ (1959) Two dimensional convection from heated wires at low Reynolds numbers. J Fluid Mech 6:357–384

    Article  Google Scholar 

  • de Heer WA, Ugarte D (1993) Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett 207:480–486

    Article  Google Scholar 

  • Guo J, Yang X, Yao Y, Wang X, Liu X, Xu B (2006) Pt/onion-like fullerenes as catalyst for direct methanol fuel cell. Rare Met 25:305–308

    Article  Google Scholar 

  • Height MJ, Howard JB, Tester JW (2005) Flame synthesis of single walled carbon nanotubes. Proc Combust Inst 30:2537–2543

    Article  Google Scholar 

  • Hou SS, Chung DH, Lin TH (2009a) Flame synthesis of carbon nanotubes in a rotating counterflow. J Nanosci Nanotechnol 9:4826–4833

    Article  CAS  Google Scholar 

  • Hou SS, Chung DH, Lin TH (2009b) High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon 47:938–947

    Article  CAS  Google Scholar 

  • Koudoumas E, Kokkinaki O, Konstantaki M, Couris S, Korovin S, Detkov P, Kuznetsov V, Pimenov S, Pustovoi V (2002) Onion-like carbon and diamond nanoparticles for optical limiting. Chem Phys Lett 357:336–340

    Article  CAS  Google Scholar 

  • Lee GW, Jurng J, Hwang J (2004) Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame. Carbon 42:682–685

    Article  CAS  Google Scholar 

  • Li YL, Zhang LH, Zhong XH, Windle AH (2007) Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology 18:225604

    Article  Google Scholar 

  • Li TX, Kuwana K, Saito K, Zhang H, Chen Z (2009) Temperature and carbon source effects on methane–air flame synthesis of CNTs. Proc Combust Inst 32:1855–1861

    Article  CAS  Google Scholar 

  • Liu TC, Li YY (2006) Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method. Carbon 44:2045–2050

    Article  CAS  Google Scholar 

  • Loutfy R, Pugazhendhi P, Tasaki K, Venkatesan A (2005) Fullerene-based electrolyte for fuel cells. US Patent Specification 6949304

  • Lowe H (2006) Fullerene lubricant. US Patent Specification 02219955

  • Maksimenko SA, Rodionova VN, Slepyan GY, Karpovich VA, Shenderova O, Walsh J, Kuznetsov VL, Mazov IN, Moseenkov SI, Okotrub AV, Lambin P (2007) Attenuation of electromagnetic waves in onion-like carbon composites. Diam Relat Mater 16:1231–1235

    Article  CAS  Google Scholar 

  • Merchan-Merchan W, Saveliev A, Kennedy LA, Fridman A (2002) Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalyst. Chem Phys Lett 354:20–24

    Article  CAS  Google Scholar 

  • Merchan-Merchan W, Saveliev AV, Kennedy LA (2004) High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon 42:599–608

    Article  CAS  Google Scholar 

  • Merchan-Merchan W, Saveliev AV, Kennedy L, Jimenez WC (2010) Combustion synthesis of carbon nanotubes and related nanostructures. Prog Energy Combust Sci 36:696–727

    Article  CAS  Google Scholar 

  • Mo YH, Kibria AKMF, Nahm KS (2001) The growth mechanism of carbon nanotubes from thermal cracking of acetylene over nickel catalyst supported on alumina. Synth Met 122:443–447

    Article  CAS  Google Scholar 

  • Nakazawa S, Yokomori T, Mizomoto M (2005) Flame synthesis of carbon nanotubes in a wall stagnation flow. Chem Phys Lett 403:158–162

    Article  CAS  Google Scholar 

  • Nasibulin AG, Moisala A, Brown DP, Kauppinen EI (2003) Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon 41:2711–2724

    Article  CAS  Google Scholar 

  • Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S (1993) Single-crystal metals encapsulated in carbon nanoparticles. Science 259:346–348

    Article  CAS  Google Scholar 

  • Saito Y, Yoshikawa T, Inagaki M, Tomita M, Hayashi T (1993) Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chem Phys Lett 204:277–282

    Article  CAS  Google Scholar 

  • Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga GAJ (2001) Nanotechnology: synthesis of carbon ‘onions’ in water. Nature 414:506–507

    Article  CAS  Google Scholar 

  • Saveliev AV, Kennedy LA, Merchan-Merchan W (2003) Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combust Flame 135:27–33

    Article  CAS  Google Scholar 

  • Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Nanodiamond and onion-like carbon polymer nanocomposites. Diamond Relat Mater 16:1213–1217

    Article  CAS  Google Scholar 

  • Tenne R, Rapoport L, Lvovsky M, Feldman Y, Leshchinsky V (2004) Hollow fullerene-like nanoparticles as solid lubricants in composite metal matrices. US Patent Specification 6710020

  • Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709

    Article  CAS  Google Scholar 

  • Unrau CJ, Axelbaum RL, Biswas P, Fraundorf P (2007) Synthesis of single-walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics. Proc Combust Inst 31:1865–1872

    Article  Google Scholar 

  • Unrau CJ, Axelbaum RL, Fraundorf P (2010) Single-walled carbon nanotube formation on iron oxide catalysts in diffusion flames. J Nanopart Res 12:2125–2133

    Article  CAS  Google Scholar 

  • Vander Wal RL, Hall LJ, Berger GMT (2002) The chemistry of premixed flame synthesis of carbon nanotubes using supported catalysts. Proc Combust Inst 29:1079–1085

    Article  CAS  Google Scholar 

  • Xu F, Liu X, Tse SD (2006) Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane diffusion flames. Carbon 44:570–577

    Article  CAS  Google Scholar 

  • Xu F, Zhao H, Tse SD (2007) Carbon nanotube synthesis on catalytic metal alloys in methane/air counterflow diffusion flames. Proc Combust Inst 31:1839–1847

    Article  Google Scholar 

  • Yuan L, Saito K, Hu W, Chen Z (2001a) Ethylene flame synthesis of well aligned multi-walled carbon nanotubes. Chem Phys Lett 346:23–28

    Article  CAS  Google Scholar 

  • Yuan L, Saito K, Pan C, Williams FA, Gordon AS (2001b) Nanotubes from methane flames. Chem Phys Lett 340:237–241

    Article  CAS  Google Scholar 

  • Zhou Q, Li C, Gu F, Du HL (2008) Flame synthesis of carbon nanotubes with high density on stainless steel mesh. J Alloys Compd 463:317–322

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council, Taiwan, ROC, for their financial support under contract of NSC 100-2221-E-168-036-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta-Hui Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, SS., Huang, WC. & Lin, TH. Flame synthesis of carbon nanostructures using mixed fuel in oxygen-enriched environment. J Nanopart Res 14, 1243 (2012). https://doi.org/10.1007/s11051-012-1243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1243-4

Keywords

Navigation