Size-controlled synthesis of Fe2O3 and Fe3O4 nanoparticles onto zeolite by means of a modified activated-coprecipitation method: effect of the HCl concentration during the activation

  • S. Mendoza-Bello
  • Raúl A. Morales-Luckie
  • L. Flores-Santos
  • Juan P. Hinestroza
  • Víctor Sanchez-Mendieta
Research Paper


Synthetic sodium type A zeolite bearing Fe2O3 and Fe3O4 nanoparticles composites have been prepared by means of a coprecipitation method with two different activation methodologies, one using Sn and the other using Sn/Pd nanoparticles as activators. Sn activation generates hematite nanoparticles while Sn/Pd produces magnetite nanoparticles. Amount of HCl used during the activation of the zeolite with SnCl2 showed a correlation between the stannous activating species and the particle size. Both Sn and Sn–Pd activated nanocomposites show nearly narrow size distributions but only those iron oxides obtained with Sn–Pd showed supermagnetism.


Superparamagnetism Controlled particle size Clinoptilolite Activated-coprecipitation method 



The authors are grateful to the Autonomous University of the State of Mexico (UAEM) for the financial support through the research project 3246/2012CHT. We thank the CID-KUO for the facilities to fulfill this work. We thank Dr. José Israel Betancourt Reyes for his help with VSM experiments.


  1. Abe H, Govindachetty S, Xu Y, Sekido N, Yamabe-Mitarai Y, Shimoda M (2010) Synthesis and catalytic performance of intermetallic nanoparticles. Materia 49:314–316 ISSN: 1340-2625Google Scholar
  2. Chen D, Chen P, Huagong XC (2009) Synthesis and application of magnetic magnetite nanoparticles. N Chemical Mater 37(49):10–12 ISSN: 1006-3536Google Scholar
  3. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek (2010) Magnetic nanoparticles and targeted drug delivering. J Pharmacol Res 62:144–149. doi: 10.1016/j.phrs.2010.01.014 CrossRefGoogle Scholar
  4. Christmann K, Schwede S, Schubert S, Kudernatsch W (2010) Model studies on CO oxidation catalyst systems: titania and gold nanoparticles. Chem Phys Chem 11:1344–1363. doi: 10.1002/cphc.200900769 CrossRefGoogle Scholar
  5. Colston SL, O’Connor D, Barnes P, Mayes EL, Mann S, Ereimuth H, Ehrfeld W (2000) Functional micro-concrete: the incorporation of zeolites and inorganic nano-particles into cement micro-structures. J Mater Sci Lett 19:1085–1088. doi: 10.1023/A:1006767809807 CrossRefGoogle Scholar
  6. Dlugopolska K, Ruman T, Pogocki D, Danilczuk M (2009) Wiad Chem 63(11-12):1073–1088 ISSN: 0043-5104Google Scholar
  7. Giouroudi I, Kosel J (2010) Recent progress in biomedical applications of magnetic nanoparticles. J Recent Pat Nanotechnol 4:111–118. doi: 10.2174/187221010791208795 CrossRefGoogle Scholar
  8. Han W, Liu G, Xu Y, Wang P, Liu Q (2007) Method for preparing nanoscale granular material for removing heavy metals. Patent Numer 2007.10300310Google Scholar
  9. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742. doi: 10.1002/adma.201000260 CrossRefGoogle Scholar
  10. Hu J, Chen GH, Lo-Irene MC (2005a) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536. doi: 10.1016/j.watres.2005.05.051 CrossRefGoogle Scholar
  11. Hu J, Lo-Irene MC, Chen GH (2005b) Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21:11173–11179. doi: 10.1021/la051076h CrossRefGoogle Scholar
  12. Iwasaki T (2010) Facile synthesis of superparamagnetic magnetite nanoparticles using mechanochemical effect. Kagaku to Kogyo Chem Chem Ind 61:521–525. ISSN: 0451-2014Google Scholar
  13. Jeyadevan B (2010) Present status and prospects of magnetite nanoparticles-based hyperthermia. J Ceram Soc Jpn 118:391–401. doi: org/10.2109/jcersj2.118.391 CrossRefGoogle Scholar
  14. Kobayashi Y, Salgueiriño-Maceira V, Liz-Marzán LM (2001) Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chem Mater 13:1630–1633. doi: 10.1021/cm001240g CrossRefGoogle Scholar
  15. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558. doi: 10.1109/TMAG.2010.2046907 CrossRefGoogle Scholar
  16. Maeda K, Domen K, Shokubai (2010) Development of core/shell-structured noble-metal/Cr2O3 nanoparticles as effective promoters for overall water splitting by particulate photocatalysts. Shokubai 52:160–165 ISSN: 0559-8958Google Scholar
  17. Mahmoudi M, Simchi A, Imani M (2010) Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical applications. J Iran Chem Soc 7:S1–S27. doi: 10.1007/BF03246181 CrossRefGoogle Scholar
  18. Pestryakov AN, Petranovskii VP, Kryazhov A, Ozhereliev O, Pfander N, Knop-Gericke A (2004) Study of copper nanoparticles formation on supports of different nature by UV–Vis diffuse reflectance spectroscopy. Chem Phys Lett 385:173–176. doi: 10.1016/j.cplett.2003.12.077 CrossRefGoogle Scholar
  19. Petranovskii V, Gurin V, Bogdanchikova N, Hernandez M-A, Avalos M (2002) A selectivity of zeolite matrices in the Cu(II) reduction process. Stud Surf Sci Catal 141:561–568. doi: org/10.1016/S0167-2991(02)80590-0 CrossRefGoogle Scholar
  20. Shekhawat GS, Arya V (2008) Nanomedicines: emergence a new era in biomedical sciences. NanoTrends 5:9–20 ISSN 0973-418XGoogle Scholar
  21. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009a) Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresour Technol 100:4139–4146. doi: 10.1016/j.biortech.2009.04.004 CrossRefGoogle Scholar
  22. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009b) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319. doi: org/10.1016/j.seppur.2009.05.020 CrossRefGoogle Scholar
  23. Stakheev AY, Mashkovskii IS, Baeva GN, Telegina NS (2010) Specific features of the catalytic behavior of supported palladium nanoparticles in heterogeneous catalytic reactions. Russ J Gen Chem 80:618–629. doi: 10.1134/S1070363210030424 CrossRefGoogle Scholar
  24. Wang Y, Weinstock I (2010) Cation mediated self-assembly of inorganic cluster anion building blocks. A Dalton Trans 39(27):6143–6152. doi: 10.1039/C0DT00166J CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • S. Mendoza-Bello
    • 1
    • 2
  • Raúl A. Morales-Luckie
    • 2
  • L. Flores-Santos
    • 1
  • Juan P. Hinestroza
    • 3
  • Víctor Sanchez-Mendieta
    • 2
  1. 1.Nanostructured Materials GroupTechnological Research and Development Centre CIDLermaMexico
  2. 2.Centro Conjunto de Investigación en Química Sustentable UAEM-UNAMTolucaMexico
  3. 3.Department of Fiber Science and Apparel DesignCornell UniversityIthacaUSA

Personalised recommendations