Study of luminescence and optical resonances in Sb2O3 micro- and nanotriangles

  • Teresa Cebriano
  • Bianchi Méndez
  • Javier Piqueras
Research Paper


Luminescence of micro- and nanotriangles of cubic antimony oxide, Sb2O3 has been investigated by cathodoluminescence (CL) in scanning electron microscope and by photoluminescence (PL) in a laser confocal microscope. The triangles were grown by a thermal evaporation-deposition process with pure antimony powders as precursor, and present a self assembled arrangement covering extended areas of the samples. CL spectra of the triangles show bands at 2–2.5 and 3.1 eV, the latter is not observed in the Sb2O3 initial powder. PL excited by 325 nm laser shows a band at 2.4 eV with a shoulder at 2.75 eV, as well as resonance modes suggesting optical cavity behavior of the triangles. The separation between resonant peaks from different triangles has been correlated with the triangle side length and possible optical paths were obtained according to the Fabry–Perot relationship. These results along with the optical images suggest that not only Fabry–Perot cavity modes, but also whispering gallery modes may occur inside the micro- and nanotriangle structures.


Micro- and nanotriangles Antimony oxide Luminescence 



This work has been supported by Spanish MICINN through projects MAT 2009-07882 and Consolider 2010-00013.


  1. Chen Q, Hu Y, Huang Y, Du Y, Fan Z (2007) Equilateral-triangle-resonator injection lasers with directional emission. IEEE J Quantum Electron 43:440–444CrossRefGoogle Scholar
  2. Chin HS, Cheong KY, Razak KA (2010) Review on oxides of antimony nanoparticles: synthesis, properties, and applications. J Mater Sci 45:5993–6008CrossRefGoogle Scholar
  3. Czekalla C, Sturm C, Schmidt-Grund R, Cao B, Lorenz M, Grundmann M (2008) Whispering gallery mode lasing in zinc oxide microwires. Appl Phys Lett 92:241102CrossRefGoogle Scholar
  4. Deng Z, Tang F, Chen D, Meng X, Cao L, Zou B (2006) A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections. J Phys Chem B 110:18225–18230CrossRefGoogle Scholar
  5. Deng Z, Chen D, Tang F, Ren J, Muscat AJ (2009) Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section. Nano Res 2:151–160CrossRefGoogle Scholar
  6. Dominguez-Adame F, Piqueras J (1991) Characterization of defects at grain boundaries of GaP and InP by infrared cathodoluminescence. J Appl Phys 69:502–504CrossRefGoogle Scholar
  7. Dong H, Chen Z, Sun L, Lu J, Xie W, Tan HH, Jagadish C, Shen X (2009) Whispering gallery modes in indium oxide hexagonal microcavities. Appl Phys Lett 94:173115CrossRefGoogle Scholar
  8. Dong H, Sun S, Sun L, Xie W, Zhou L, Shen X, Chen Z (2011) Single-crystalline polyhedral In2O3 vertical Fabry–Pèrot resonators. Appl Phys Lett 98:011913CrossRefGoogle Scholar
  9. Fan G, Huang Z, Chai C, Liao D (2011) Synthesis of micro-sized Sb2O3 hierarchical structures by carbothermal reduction method. Mater Lett 65:1141–1144CrossRefGoogle Scholar
  10. Huang Y-Z, Chen Q, Guo W-H, Lu Q-Y, Yu LJ (2006) Mode characteristics for equilateral triangle optical resonators. IEEE Photon Technol Lett 12:59–65Google Scholar
  11. Li Y, Zhang YX, Fang XS, Zhai TY, Liao MY, Wang HQ, Li GH, Koide Y, Bando Y, Goldberg D (2011) Sb2O3 nanobelt networks for excellent visible-light-range photodetectors. Nanotechnology 22:165704CrossRefGoogle Scholar
  12. Liu J, Lee S, Ahn YH, Park J-Y, Koh KH, Park KH (2008) Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail. Appl Phys Lett 2008(92):263102CrossRefGoogle Scholar
  13. Long JP, Flynn RA, Vurgaftman I, Simpkins BS, Makinen AJ, Mastro MA, Pehrsson PE (2010) Transverse-microcavity modulation of photoluminescence from GaN nanowires. Appl Phys Lett 97:103105CrossRefGoogle Scholar
  14. Lu Q-Y, Chen X-H, Guo W-H, Yu L-J, Huang Y-Z, Wang J, Luo Y (2004) Mode characteristics of semiconductor equilateral triangle microcavities with side length of 5–20 μm. IEEE Photon Technol Lett 16:359–361CrossRefGoogle Scholar
  15. Matsumoto A, Koyama Y, Togo A, Choi M, Tanaka I (2011) Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3 crystal polymorphs. Phys Rev B 83:214110CrossRefGoogle Scholar
  16. Naidu BS, Pandey M, Sudarsan V, Vatsa RK, Tewari R (2009) Photoluminiscence and Raman spectroscopic investigations of morphology assisted effects in Sb2O3. Chem Phys Lett 474:180–184CrossRefGoogle Scholar
  17. Ozawa K, Sakka Y, Amano M (1998) Preparation and electrical conductivity of three types of antimonic acid films. J Mater Res 13:830–833CrossRefGoogle Scholar
  18. Tigau N, Ciupina V, Prodan G (2005) The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films. J Cryst Growth 277:529–535CrossRefGoogle Scholar
  19. Tigau N, Ciupina V, Prodan G (2006) Structural, optical and electrical properties of Sb2O3 thin films with different thickness. J Optoelectron Adv Mater 8:37–42Google Scholar
  20. Vahala KJ (2003) Optical microcavities. Nature 424:839–846CrossRefGoogle Scholar
  21. Wang Q, Ge S, Shao Q, Zhao Y (2011) Self-assembly of Sb2O3 nanowires into microspheres: synthesis and characterization. Phys B 406:731–736CrossRefGoogle Scholar
  22. Wood C, van Pelt B, Dwight A (1972) The optical properties of amorphous and crystalline Sb2O3. Phys Status Solidi (b) 54:701–706CrossRefGoogle Scholar
  23. Xu CH, Shi SQ, Surya C, Woo CH (2007) Synthesis of antimony oxide nano-particles by vapour transport and condensation. J Mater Sci 42:9855–9858CrossRefGoogle Scholar
  24. Yacobi BG, Holt DB (1990) Cathodoluminescence microscopy of inorganic solids. Plenum Press, New YorkGoogle Scholar
  25. Ye C, Wang G, Kong M, Zhang L (2006) Controlled synthesis of Sb2O3 nanoparticles, nanowires, and nanoribbons. J Nanomater 2006:95670CrossRefGoogle Scholar
  26. Zhang Y, Li G, Zhang J, Zhang L (2004) Shape-controlled growth of one-dimensional Sb2O3 nanomaterials. Nanotechnology 15:762–765CrossRefGoogle Scholar
  27. Zhang X, Zhang X, Xu J, Shan X, Xu J, Yu D (2009) Whispering gallery modes in single triangular ZnO nanorods. Opt Lett 34:2533–2535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Teresa Cebriano
    • 1
  • Bianchi Méndez
    • 1
  • Javier Piqueras
    • 1
  1. 1.Departamento de Física de Materiales, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations