Cytotoxicity and inflammation in human alveolar epithelial cells following exposure to occupational levels of gold and silver nanoparticles

  • George D. Bachand
  • Amy Allen
  • Marlene Bachand
  • Komandoor E. Achyuthan
  • Jean Clare Seagrave
  • Susan M. Brozik
Research Paper


While inhalation represents one of the most likely routes of exposure, the toxicity and response of nanoparticles at concentrations expected from such an exposure are not well understood. Here we characterized the in vitro response of human A549 adenocarcinomic alveolar epithelial cells following exposure to gold (AuNP) and silver (AgNP) nanoparticles at levels approximating an occupational exposure. Changes in neither oxidative stress nor cytotoxicity were significantly affected by exposure to AgNPs and AuNPs, regardless of NP type (Ag vs. Au), concentration, surface ligand (citrate or tannic acid), or size. An inflammatory response was, however, observed in response to 20 nm AgNPs and 20 nm AuNPs, where significant differences in the release of interleukin (IL)-8 but not IL-6 were observed. Additional data demonstrated that increased IL-8 secretion was strongly dependent on both nanoparticle size and concentration. Overall these data suggest that, while not acutely toxic, occupational exposure to AuNPs and AgNPs may trigger a significant inflammatory response in alveolar epithelium. Moreover, the differential responses in IL-8 and IL-6 secretion suggest that NPs may induce a response pathway that is distinct from those commonly elicited by allergens and pathogens.


Nanotoxicology Occupational health Toxicology Particle toxicology 



The authors would like to thank Drs. Nathan Bouxsein and Conrad James for their critical comments on this manuscript. This work was supported by Sandia National Laboratories’ Laboratory Directed Research and Development Office, and was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.


  1. Allouni ZE, Cimpan MR, Hol PJ, Skodvin T, Gjerdet NR (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloid Surf B 68(1):83–87CrossRefGoogle Scholar
  2. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRefGoogle Scholar
  3. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792CrossRefGoogle Scholar
  4. Borchard G, Kreuter J (1996) The role of serum complement on the organ distribution of intravenously administered poly (methyl methacrylate) nanoparticles: effects of pre-coating with plasma and with serum complement. Pharm Res 13(7):1055–1058CrossRefGoogle Scholar
  5. Brandenberger C, Rothen-Rutishauser B, Muhlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG (2010) Effects and uptake of gold nanoparticles deposited at the air–liquid interface of a human epithelial airway model. Toxicol Appl Pharm 242(1):56–65CrossRefGoogle Scholar
  6. Burgler S, Ouaked N, Bassin C, Basinski TM, Mantel PY, Siegmund K, Meyer N, Akdis CA, Schmidt-Weber CB (2009) Differentiation and functional analysis of human T(h)17 cells. J Allergy Clin Immun 123(3):588–595CrossRefGoogle Scholar
  7. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619CrossRefGoogle Scholar
  8. Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R (2003) Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 278(19):17036–17043CrossRefGoogle Scholar
  9. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550CrossRefGoogle Scholar
  10. Ding Y, Zhao YX, Gu XH, Ma HZ, He XG, Liu M (2011) Association of glutathione level and cytotoxicity of gold nanoparticles in lung cancer cells. J Phys Chem C 115(26):12797–12802CrossRefGoogle Scholar
  11. Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhalation Toxicol 19(10):849–856CrossRefGoogle Scholar
  12. Ekstrand-Hammarström B, Akfur CM, Andersson PO, Lejon C, Österlund L, Bucht A (2012) Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2b. Nanotoxicology. doi: 10.3109/17435390.17432011.17598245
  13. Elias JA (2000) Airway remodeling in asthma—unanswered questions. Am J Resp Crit Care 161(3):S168–S171Google Scholar
  14. Fischader G, Roder-Stolinski C, Wichmann G, Nieber K, Lehmann I (2008) Release of MCP-1 and IL-8 from lung epithelial cells exposed to volatile organic compounds. Toxicol In Vitro 22(2):359–366CrossRefGoogle Scholar
  15. Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85(7):743–750CrossRefGoogle Scholar
  16. Gibson PG, Wark PAB, Simpson JL, Meldrum C, Meldrum S, Saltos N, Boyle M (2003) Induced sputum IL-8 gene expression, neutrophil influx and MMP-9 in allergic bronchopulmonary aspergillosis. Eur Respir J 21(4):582–588CrossRefGoogle Scholar
  17. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201(1):27–33CrossRefGoogle Scholar
  18. Hesterberg TW, Long CM, Lapin CA, Hamade AK, Valberg PA (2010) Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles? Inhalation Toxicol 22(8):679–694CrossRefGoogle Scholar
  19. Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, Nanashima N, Niki E, Yoshida Y (2009) Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol 22(3):543–553CrossRefGoogle Scholar
  20. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150CrossRefGoogle Scholar
  21. Lamblin C, Gosset P, Tillie-Leblond I, Saulnier F, Marquette CH, Wallaert B, Tonnel AB (1998) Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am J Resp Crit Care 157(2):394–402Google Scholar
  22. Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M (2012) The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, a549 and THP-1 cells. Toxicol Lett 208(3):197–213CrossRefGoogle Scholar
  23. Leonard EJ, Yoshimura T (1990) Neutrophil attractant activation protein-1 (nap-1 [interleukin-8]). Am J Resp Cell Mol 2(6):479–486Google Scholar
  24. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49CrossRefGoogle Scholar
  25. Liu W, Wu YA, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330CrossRefGoogle Scholar
  26. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269CrossRefGoogle Scholar
  27. Mohamed BM, Verma NK, Prina-Mello A, Williams Y, Davies AM, Bakos G, Tormey L, Edwards C, Hanrahan J, Salvati A, Lynch I, Dawson K, Kelleher D, Volkov Y (2011) Activation of stress-related signalling pathway in human cells upon sio(2) nanoparticles exposure as an early indicator of cytotoxicity. J Nanobiotechnol 9:29Google Scholar
  28. Moller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P, Haussinger K, Kreyling WG (2008) Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Resp Crit Care 177(4):426–432CrossRefGoogle Scholar
  29. Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K (2007) The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64(9):609–615CrossRefGoogle Scholar
  30. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloid Surf B 79(2):488–493CrossRefGoogle Scholar
  31. Nel AE, Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807CrossRefGoogle Scholar
  32. Norzila MZ, Fakes K, Henry RL, Simpson J, Gibson PG (2000) Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am J Resp Crit Care 161(3):769–774Google Scholar
  33. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839CrossRefGoogle Scholar
  34. Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, Lim Y, Lee KH (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhalation Toxicol 19:59–65CrossRefGoogle Scholar
  35. Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007) Cell selective response to gold nanoparticles. Nanomed Nanotechnol 3(2):111–119CrossRefGoogle Scholar
  36. Phalen RF, Oldham MJ, Nel AE (2006) Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicol Sci 92(1):126–132CrossRefGoogle Scholar
  37. Pozo D, Castillo PM, Herrera JL, Fernandez-Montesinos R, Caro C, Zaderenko AP, Mijias JA (2008) Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by toll-like receptor ligands. Nanomedicine Uk 3(5):627–635CrossRefGoogle Scholar
  38. Ramdhan DH, Ito Y, Yanagiba Y, Yamagishi N, Hayashi Y, Li C, Taneda S, Suzuki AK, Watanabe G, Taya K, Kamijima M, Nakajima T (2009) Nanoparticle-rich diesel exhaust may disrupt testosterone biosynthesis and metabolism via growth hormone. Toxicol Lett 191(2–3):103–108CrossRefGoogle Scholar
  39. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127(1):143–153CrossRefGoogle Scholar
  40. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Persp 118(3):407–413CrossRefGoogle Scholar
  41. Shin, DC, Jang, JY, Yang, JY, Kim, SH, Choi, IH, Lim, YW, Kim, CS, Lee, GT (2008) Cytotoxicity of nano-materials on human bronchial epithelial cell. 142–145Google Scholar
  42. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44(6):1034–1047CrossRefGoogle Scholar
  43. Smith WB, Gamble JR, Clarklewis I, Vadas MA (1991) Interleukin-8 induces neutrophil transendothelial migration. Immunology 72(1):65–72Google Scholar
  44. Stone V, Donaldson K (2006) Nanotoxicology—signs of stress. Nat Nanotechnol 1(1):23–24CrossRefGoogle Scholar
  45. Sur I, Cam D, Kahraman M, Baysal A, Culha M (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 21:175104–175113CrossRefGoogle Scholar
  46. Takizawa H (1998) Airway epithelial cells as regulators of airway inflammation (review). Int J Mol Med 1(2):367–378Google Scholar
  47. Tillie-Leblond I, Pugin J, Marquette CH, Lamblin C, Saulnier F, Brichet A, Wallaert B, Tonnel AB, Gosset P (1999) Balance between proinflammatory cytokines and their inhibitors in bronchial lavage from patients with status asthmaticus. Am J Resp Crit Care 159(2):487–494Google Scholar
  48. Uboldi, C, Bonacchi, D, Lorenzi, G, Hermanns, MI, Pohl, C, Baldi, G, Unger, RE, Kirkpatrick, CJ (2009) Gold nanoparticles induce cytotoxicity in the alveolar type-ii cell lines A549 and NCIH441. Part Fibre Toxicol 6:18–29Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • George D. Bachand
    • 1
  • Amy Allen
    • 2
  • Marlene Bachand
    • 3
  • Komandoor E. Achyuthan
    • 4
  • Jean Clare Seagrave
    • 5
  • Susan M. Brozik
    • 4
  1. 1.Center for Integrated NanotechnologiesSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Department of Analytical ScienceSandia National LaboratoriesAlbuquerqueUSA
  3. 3.Department of NanobiologySandia National LaboratoriesAlbuquerqueUSA
  4. 4.Department of Biosensors and NanomaterialsSandia National LaboratoriesAlbuquerqueUSA
  5. 5.Applied Life Science and Toxicology DivisionLovelace Respiratory Research InstituteAlbuquerqueUSA

Personalised recommendations