The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

Research Paper


This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper (~16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.


Supported copper catalyst CO oxidation Microwave-assisted polyol process pH 


  1. Altincekic TG, Boz I, Akturk S (2008) Synthesis and characterization of nanosized Cu/ZnO catalyst by polyol method. J Nanosci Nanotechnol 8(2):874–877. doi: 10.1166/jnn.2008.C197 CrossRefGoogle Scholar
  2. Carotenuto G (2001) Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Appl Organomet Chem 15(5):344–351CrossRefGoogle Scholar
  3. Chen WX, Lee JY, Liu Z (2002) Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem Commun 8(21):2588–2589CrossRefGoogle Scholar
  4. Chen D, Tang K, Shen G, Sheng J, Fang Z, Liu X, Zheng H, Qian Y (2003) Microwave-assisted synthesis of metal sulfides in ethylene glycol. Mater Chem Phys 82(1):206–209CrossRefGoogle Scholar
  5. Chu YY, Wang ZB, Gu DM, Yin GP (2010) Performance of Pt/C catalysts prepared by microwave-assisted polyol process for methanol electrooxidation. J Power Sources 195(7):1799–1804CrossRefGoogle Scholar
  6. Chuang K-H, Lu C-Y, Wey M-Y (2011) Effects of microwave power and polyvinyl pyrrolidone on microwave polyol process of carbon-supported Cu catalysts for CO oxidation. Mater Sci Eng B 176(9):745–749CrossRefGoogle Scholar
  7. Gan L, Du H, Li B, Kang F (2009) Influence of reaction temperature on the particle-composition distributions and activities of polyol-synthesized Pt–Ru/C catalysts for methanol oxidation. J Power Sources 191(2):233–239. doi: 10.1016/j.jpowsour.2009.02.042 CrossRefGoogle Scholar
  8. Guo Z, Chen Y, Li L, Wang X, Haller GL, Yang Y (2010) Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation. J Catal 276(2):314–326. doi: 10.1016/j.jcat.2010.09.021 CrossRefGoogle Scholar
  9. Hernández-Fernández P, Montiel M, Ocón P, de la Fuente JLG, García-Rodríguez S, Rojas S, Fierro JLG (2010) Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton-exchange membrane fuel cell. Appl Catal B 99(1–2):343–352Google Scholar
  10. Horiuchi S, Hanada T, Izu N, Matsubara I (2012) Electron microscopy investigations of the organization of cerium oxide nanocrystallites and polymers developed in polyvinylpyrrolidone-assisted polyol synthesis process. J Nanopart Res 14(3):1–10CrossRefGoogle Scholar
  11. Huang YJ, Qi GR, Chen LS (2003) Effects of morphology and composition on catalytic performance of double metal cyanide complex catalyst. Appl Catal A 240(1–2):263–271Google Scholar
  12. Katsuki H, Komarneni S (2001) Microwave-hydrothermal synthesis of monodispersed nanophase α-Fe2O3. J Am Ceram Soc 84(10):2313–2317CrossRefGoogle Scholar
  13. Kim H-D, Park HJ, Kim T-W, Jeong K-E, Chae H-J, Jeong S-Y, Lee C-H, Kim C-U (2011) The effect of support and reaction conditions on aqueous phase reforming of polyol over supported Pt–Re bimetallic catalysts. Catal Today 185(1):73–80CrossRefGoogle Scholar
  14. Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49(9):885–900CrossRefGoogle Scholar
  15. Li X, Chen W-X, Zhao J, Xing W, Xu Z-D (2005) Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon 43(10):2168–2174. doi: 10.1016/j.carbon.2005.03.030 CrossRefGoogle Scholar
  16. Lu C-Y, Tseng H–H, Wey M-Y, Hsueh T-W (2009) The comparison between the polyol process and the impregnation method for the preparation of CNT-supported nanoscale Cu catalyst. Chem Eng J 145(3):461–467CrossRefGoogle Scholar
  17. Luo X, Li Z, Yuan C, Chen Y (2011) Polyol synthesis of silver nanoplates: the crystal growth mechanism based on a rivalrous adsorption. Mater Chem Phys 128(1–2):77–82. doi: 10.1016/j.matchemphys.2011.02.074 CrossRefGoogle Scholar
  18. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715. doi: 10.1002/adfm.200500029 CrossRefGoogle Scholar
  19. Oh H-S, Oh J-G, Kim H (2008) Modification of polyol process for synthesis of highly platinum loaded platinum–carbon catalysts for fuel cells. J Power Sources 183(2):600–603. doi: 10.1016/j.jpowsour.2008.05.070 CrossRefGoogle Scholar
  20. Papa F, Negrila C, Miyazaki A, Balint I (2011) Morphology and chemical state of PVP-protected Pt, Pt–Cu, and Pt–Ag nanoparticles prepared by alkaline polyol method. J Nanopart Res 13(10):5057–5064CrossRefGoogle Scholar
  21. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982CrossRefGoogle Scholar
  22. Poul L, Jouini N, Fiévet F (2000) Layered hydroxide metal acetates (metal = zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chem Mater 12(10):3123–3132CrossRefGoogle Scholar
  23. Qi J, Jiang LH, Jing MY, Tang QW, Sun GQ (2011) Preparation of Pt/C via a polyol process—investigation on carbon support adding sequence. Int J Hydrog Energy 36(17):10490–10501. doi: 10.1016/j.ijhydene.2011.06.022 CrossRefGoogle Scholar
  24. Ren L, Xing Y (2008) Effect of pH on Pt–Ru electrocatalysts prepared via a polyol process on carbon nanotubes. Electrochim Acta 53(17):5563–5568CrossRefGoogle Scholar
  25. Sales EA, Benhamida B, Caizergues V, Lagier J-P, Fiévet F, Bozon-Verduraz F (1998) Alumina-supported Pd, Ag and Pd–Ag catalysts: preparation through the polyol process, characterization and reactivity in hexa-1,5-diene hydrogenation. Appl Catal A 172(2):273–283. doi: 10.1016/s0926-860x(98)00124-0 CrossRefGoogle Scholar
  26. Sasikala R, Sudarsan V, Sakuntala T, Jagannath N, Sudakar C, Naik R, Bharadwaj SR (2008) Nanoparticles of vanadia–zirconia catalysts synthesized by polyol-mediated route: enhanced selectivity for the oxidative dehydrogenation of propane to propene. Appl Catal A 350(2):252–258CrossRefGoogle Scholar
  27. Tang Y, Shih K, Wang Y, Chong T-C (2011) Zinc stabilization efficiency of aluminate spinel structure and its leaching behavior. Environ Sci Technol 45(24):10544–10550CrossRefGoogle Scholar
  28. Teng Y, Kusano Y, Azuma M, Haruta M, Shimakawa Y (2011) Morphology effects of Co3O4 nanocrystals catalyzing CO oxidation in a dry reactant gas stream. Catal Sci Technol 1(6):920–922CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Environmental EngineeringNational Chung Hsing UniversityTaichungTaiwan, ROC
  2. 2.Department of Civil EngineeringThe University of Hong KongHong KongChina

Personalised recommendations