The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

  • Kui-Hao Chuang
  • Kaimin Shih
  • Ming-Yen Wey
Research Paper


This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper (~16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.


Supported copper catalyst CO oxidation Microwave-assisted polyol process pH 


  1. Altincekic TG, Boz I, Akturk S (2008) Synthesis and characterization of nanosized Cu/ZnO catalyst by polyol method. J Nanosci Nanotechnol 8(2):874–877. doi: 10.1166/jnn.2008.C197 CrossRefGoogle Scholar
  2. Carotenuto G (2001) Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Appl Organomet Chem 15(5):344–351CrossRefGoogle Scholar
  3. Chen WX, Lee JY, Liu Z (2002) Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem Commun 8(21):2588–2589CrossRefGoogle Scholar
  4. Chen D, Tang K, Shen G, Sheng J, Fang Z, Liu X, Zheng H, Qian Y (2003) Microwave-assisted synthesis of metal sulfides in ethylene glycol. Mater Chem Phys 82(1):206–209CrossRefGoogle Scholar
  5. Chu YY, Wang ZB, Gu DM, Yin GP (2010) Performance of Pt/C catalysts prepared by microwave-assisted polyol process for methanol electrooxidation. J Power Sources 195(7):1799–1804CrossRefGoogle Scholar
  6. Chuang K-H, Lu C-Y, Wey M-Y (2011) Effects of microwave power and polyvinyl pyrrolidone on microwave polyol process of carbon-supported Cu catalysts for CO oxidation. Mater Sci Eng B 176(9):745–749CrossRefGoogle Scholar
  7. Gan L, Du H, Li B, Kang F (2009) Influence of reaction temperature on the particle-composition distributions and activities of polyol-synthesized Pt–Ru/C catalysts for methanol oxidation. J Power Sources 191(2):233–239. doi: 10.1016/j.jpowsour.2009.02.042 CrossRefGoogle Scholar
  8. Guo Z, Chen Y, Li L, Wang X, Haller GL, Yang Y (2010) Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation. J Catal 276(2):314–326. doi: 10.1016/j.jcat.2010.09.021 CrossRefGoogle Scholar
  9. Hernández-Fernández P, Montiel M, Ocón P, de la Fuente JLG, García-Rodríguez S, Rojas S, Fierro JLG (2010) Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton-exchange membrane fuel cell. Appl Catal B 99(1–2):343–352Google Scholar
  10. Horiuchi S, Hanada T, Izu N, Matsubara I (2012) Electron microscopy investigations of the organization of cerium oxide nanocrystallites and polymers developed in polyvinylpyrrolidone-assisted polyol synthesis process. J Nanopart Res 14(3):1–10CrossRefGoogle Scholar
  11. Huang YJ, Qi GR, Chen LS (2003) Effects of morphology and composition on catalytic performance of double metal cyanide complex catalyst. Appl Catal A 240(1–2):263–271Google Scholar
  12. Katsuki H, Komarneni S (2001) Microwave-hydrothermal synthesis of monodispersed nanophase α-Fe2O3. J Am Ceram Soc 84(10):2313–2317CrossRefGoogle Scholar
  13. Kim H-D, Park HJ, Kim T-W, Jeong K-E, Chae H-J, Jeong S-Y, Lee C-H, Kim C-U (2011) The effect of support and reaction conditions on aqueous phase reforming of polyol over supported Pt–Re bimetallic catalysts. Catal Today 185(1):73–80CrossRefGoogle Scholar
  14. Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49(9):885–900CrossRefGoogle Scholar
  15. Li X, Chen W-X, Zhao J, Xing W, Xu Z-D (2005) Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon 43(10):2168–2174. doi: 10.1016/j.carbon.2005.03.030 CrossRefGoogle Scholar
  16. Lu C-Y, Tseng H–H, Wey M-Y, Hsueh T-W (2009) The comparison between the polyol process and the impregnation method for the preparation of CNT-supported nanoscale Cu catalyst. Chem Eng J 145(3):461–467CrossRefGoogle Scholar
  17. Luo X, Li Z, Yuan C, Chen Y (2011) Polyol synthesis of silver nanoplates: the crystal growth mechanism based on a rivalrous adsorption. Mater Chem Phys 128(1–2):77–82. doi: 10.1016/j.matchemphys.2011.02.074 CrossRefGoogle Scholar
  18. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715. doi: 10.1002/adfm.200500029 CrossRefGoogle Scholar
  19. Oh H-S, Oh J-G, Kim H (2008) Modification of polyol process for synthesis of highly platinum loaded platinum–carbon catalysts for fuel cells. J Power Sources 183(2):600–603. doi: 10.1016/j.jpowsour.2008.05.070 CrossRefGoogle Scholar
  20. Papa F, Negrila C, Miyazaki A, Balint I (2011) Morphology and chemical state of PVP-protected Pt, Pt–Cu, and Pt–Ag nanoparticles prepared by alkaline polyol method. J Nanopart Res 13(10):5057–5064CrossRefGoogle Scholar
  21. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982CrossRefGoogle Scholar
  22. Poul L, Jouini N, Fiévet F (2000) Layered hydroxide metal acetates (metal = zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chem Mater 12(10):3123–3132CrossRefGoogle Scholar
  23. Qi J, Jiang LH, Jing MY, Tang QW, Sun GQ (2011) Preparation of Pt/C via a polyol process—investigation on carbon support adding sequence. Int J Hydrog Energy 36(17):10490–10501. doi: 10.1016/j.ijhydene.2011.06.022 CrossRefGoogle Scholar
  24. Ren L, Xing Y (2008) Effect of pH on Pt–Ru electrocatalysts prepared via a polyol process on carbon nanotubes. Electrochim Acta 53(17):5563–5568CrossRefGoogle Scholar
  25. Sales EA, Benhamida B, Caizergues V, Lagier J-P, Fiévet F, Bozon-Verduraz F (1998) Alumina-supported Pd, Ag and Pd–Ag catalysts: preparation through the polyol process, characterization and reactivity in hexa-1,5-diene hydrogenation. Appl Catal A 172(2):273–283. doi: 10.1016/s0926-860x(98)00124-0 CrossRefGoogle Scholar
  26. Sasikala R, Sudarsan V, Sakuntala T, Jagannath N, Sudakar C, Naik R, Bharadwaj SR (2008) Nanoparticles of vanadia–zirconia catalysts synthesized by polyol-mediated route: enhanced selectivity for the oxidative dehydrogenation of propane to propene. Appl Catal A 350(2):252–258CrossRefGoogle Scholar
  27. Tang Y, Shih K, Wang Y, Chong T-C (2011) Zinc stabilization efficiency of aluminate spinel structure and its leaching behavior. Environ Sci Technol 45(24):10544–10550CrossRefGoogle Scholar
  28. Teng Y, Kusano Y, Azuma M, Haruta M, Shimakawa Y (2011) Morphology effects of Co3O4 nanocrystals catalyzing CO oxidation in a dry reactant gas stream. Catal Sci Technol 1(6):920–922CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Environmental EngineeringNational Chung Hsing UniversityTaichungTaiwan, ROC
  2. 2.Department of Civil EngineeringThe University of Hong KongHong KongChina

Personalised recommendations