Advertisement

Development of a gold-nanostructured surface for amperometric genosensors

  • Chiara Zanardi
  • Clara Baldoli
  • Emanuela Licandro
  • Fabio Terzi
  • Renato Seeber
Research Paper

Abstract

A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1–5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

Keywords

Gold nanoparticles Nanostructured surface Amperometric genosensor Peptide nucleic acid Ferrocene derivatives Amine deposition 

Notes

Acknowledgments

Dr. Massimo Tonelli of the Centro Interdipartimentale Grandi Strumenti (CIGS—Università di Modena e Reggio Emilia) is acknowledged for the acquisition of the SEM images. The CIGS is also acknowledged for the use of the TEM instrument. C.Z. and R.S. acknowledge the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR, Rome) for the financial support from PRIN 2009 (2009YRH27R). E.L. wishes to thank the MIUR (Rome) and the University of Milan for the financial support from PRIN 2007 (2007F9TWKE_002) and PRIN 2009 (20093N774P_003). C.B. wishes to thank CNR-PM.P06.003.

References

  1. Aoki H, Tao H (2005) Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. Analyst 130:1478–1482CrossRefGoogle Scholar
  2. Aoki H, Bühlmann P, Umezawa Y (2000) Electrochemical detection of a one-base mismatch in an oligonucleotide using ion-channel sensors with self-assembled PNA monolayers. Electroanalysis 12:1272–1276CrossRefGoogle Scholar
  3. Baldoli C, Falciola L, Licandro E, Maiorana S, Mussini P, Ramani P, Rigamonti C, Zinzalla G (2004) A new ferrocene conjugate of a tyrosine PNA monomer: synthesis and electrochemical properties. J Organomet Chem 689:4791–4802CrossRefGoogle Scholar
  4. Bin X, Sargent EH, Kelley SO (2010) Nanostructuring of sensors determines the efficiency of biomolecular capture. Anal Chem 82:5928–5931CrossRefGoogle Scholar
  5. Cai H, Xu C, He P, Fang YZ (2001) Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 510:78–85CrossRefGoogle Scholar
  6. Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259CrossRefGoogle Scholar
  7. Carralero Sanz V, Luz Mena M, González-Cortés A, Yánez-Sedeno P, Pingarrón JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes. Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1–8CrossRefGoogle Scholar
  8. Castañeda MT, Alegret S, Merkoçi A (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis 19:743–753CrossRefGoogle Scholar
  9. Cederquist KB, Keating CD (2009) Curvature effects in DNA: Au nanoparticle conjugates. ACSNano 3:256–260Google Scholar
  10. D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, Spoto G (2010) Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens Bioel 25:2095–2100CrossRefGoogle Scholar
  11. Degefa TH, Kwak J (2008) Electrochemical impedance sensing of DNA at PNA self assembled monolayer. J Electroanal Chem 612:37–41CrossRefGoogle Scholar
  12. Ensafi AA, Taei M, Rahmani HR, Khayamian T (2011) Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode. Electrochim Acta 56:8176–8183CrossRefGoogle Scholar
  13. Erdem A (2007) Nanomaterial-based electrochemical DNA sensing strategies. Talanta 74:318–325CrossRefGoogle Scholar
  14. Fang Z, Kelley SO (2009) Direct electrocatalytic mRNA detection using PNA-nanowire sensors. Anal Chem 81:612–617CrossRefGoogle Scholar
  15. Fang B, Jiao S, Li M, Qu Y, Jiang X (2008) Label-free electrochemical detection of DNA using ferrocene-containing cationic polythiophene and PNA probes on nanogold modified electrodes. Biosens Bioel 23:1175–1179CrossRefGoogle Scholar
  16. Finklea HO (2003) Electrochemistry of organized monolayers of thoils and related molecules on electrodes. In: Bard A, Robinstein I (eds) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, pp 109–335Google Scholar
  17. Gasparac R, Taft BJ, Lapierre-Devlin MA, Lazarek AD, Xu JM, Kelley SO (2004) Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. J Am Chem Soc 126:12270–12271CrossRefGoogle Scholar
  18. Hejazi MS, Pournaghi-Azar MH, Alipour E, Abdolahinia ED, Arami S, Navvah H (2011) Development of a novel electrochemical biosensor for detection and discrimination of DNA sequence and single base mutation in dsDNA samples based on PNA-dsDNA hybridization—a new platform technology. Electroanalysis 23:503–511CrossRefGoogle Scholar
  19. Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACSNano 3:418–424Google Scholar
  20. Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Act B 134:780–786CrossRefGoogle Scholar
  21. Janek RP, Fawcett WR, Ulman A (1998) Impedance spectroscopy of self-assembled monolayers on Au(111): sodium ferrocyanide charge transfer at modified electrodes. Langmuir 14:3011–3018CrossRefGoogle Scholar
  22. Le Floch F, Ho H, Harding-Lepage P, Bédard M, Neagu-Plesu R, Leclerc M (2005) Ferrocene-functionalized cationic polythiophene for the label-free electrochemical detection of DNA. Adv Mater 17:1251–1254CrossRefGoogle Scholar
  23. Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641CrossRefGoogle Scholar
  24. Li Z, Zhu Z, Liu W, Zhou Y, Han B, Gao Y, Tang Z (2012) Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc 134:3322–3325CrossRefGoogle Scholar
  25. Liu S, Li Y, Li J, Jiang L (2005) Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens Bioel 21:789–795CrossRefGoogle Scholar
  26. Liu J, He P, Yan J, Fang X, Peng J, Liu K, Fang Y (2008) An organometallic super-gelator with multiple-stimulus responsive properties. Adv Mater 20:2508–2511CrossRefGoogle Scholar
  27. Lord H, Kelley SOJ (2009) Nanomaterials for ultrasensitive electrochemical nucleic acids biosensing. Mater Chem 19:3127–3134CrossRefGoogle Scholar
  28. Mateo-Martí E, Pradier C (2010) A novel type of nucleic acid-based biosensors: the use of PNA probes, associated with surface science and electrochemical detection techniques. In: Somerset VS (ed) Intelligent and biosensors. InTech, Open Access Publisher, USA, pp 323–344Google Scholar
  29. Merkoçi A (2010) Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioel 26:1164–1177CrossRefGoogle Scholar
  30. Mohanty US (2011) Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41:257–270CrossRefGoogle Scholar
  31. Moretto L, Panero S, Scrosati B, Ugo P (2009) Template ensemble of nanoelectrodes. In: Lin Y, Nalwa HS (eds) Handbook of electrochemical technology, vol 1. American Scientific Publisher, California, pp 87–105Google Scholar
  32. Nielsen PE (2004) Peptide nucleic acids: protocols and applications, 2nd edn. Horizon Bioscience, WymondhamGoogle Scholar
  33. Oh B, Choi J (2010) Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry 79:153–161CrossRefGoogle Scholar
  34. Pasquali L, Terzi F, Zanardi C, Pigani L, Seeber R, Paolicelli G, Suturin SM, Mahne N, Nannarone S (2007a) Structure and properties of 1,4-benzenedimethanethiol films grown from solution on Au(111): an XPS and NEXAFS study. Surf Sci 601:1419–1427CrossRefGoogle Scholar
  35. Pasquali L, Terzi F, Zanardi C, Seeber R, Paolicelli G, Mahne N, Nannarone S (2007b) Bonding and orientation of 1,4-benzenedimethanethiol on Au(111) prepared from solution and from gas phase. J Physics C 19:305020Google Scholar
  36. Pasquali L, Terzi F, Seeber R, Doyle BP, Nannarone S (2008) Adsorption geometry variation of 1,4-benzenedimethanethiol SAMs on Au(111) grown from the vapour phase. J Chem Phys 128:134711–134721CrossRefGoogle Scholar
  37. Pasquali L, Terzi F, Seeber R, Nannarone S, Datta D, Dablemont C, Hamoudi H, Canepa M, Esaulov A (2011) A UPS, XPS and NEXAFS study of self-assembly of standing 1,4-benzenedimethanethiol SAMs on gold. Langmuir 27:4713–4720CrossRefGoogle Scholar
  38. Pournaghi-Azar MH, Ahour F, Hejazi MS (2010) Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization. Anal Bioanal Chem 397:3581–3587CrossRefGoogle Scholar
  39. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  40. Salah KA, Alrokyan SA, Khan MN, Ansar AA (2010) Nanomaterials as analytical tools for genosensors. Sensors 10:963–993CrossRefGoogle Scholar
  41. Sforza S, Corradini R, Tedeschi T, Marchelli R (2011) Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chem Soc Rev 40:221–232CrossRefGoogle Scholar
  42. Soleymani L, Fang Z, Sun X, Yang H, Taft BJ, Sargent EH, Kelley SO (2009) Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. Angew Chem Int Ed 48:8457–8460CrossRefGoogle Scholar
  43. Soreta TR, Henry OYF, OĭSullivan CK (2011) Electrode surface nanostructuring via nanoparticle electronucleation for signal enhancement in electrochemical genosensors. Biosens Bioel 26:3962–3966CrossRefGoogle Scholar
  44. Ugo P, Moretto L, Vezzà F (2002) Ionomer-coated electrodes and nanoelectrode ensembles as electrochemical environmental sensors: recent advances and prospects. ChemPhysChem 3:917–925CrossRefGoogle Scholar
  45. Vernille JP, Kovell LC, Schneider JW (2004) Peptide nucleic acid (PNA) amphiphiles: synthesis, self-assembly, and duplex stability. Bioconj Che. 15:1314–1321CrossRefGoogle Scholar
  46. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426CrossRefGoogle Scholar
  47. Wang J, Gong J, Xiong Y, Yang J, Gao Y, Liu Y, Lu X, Tang Z (2011a) Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem Commun 47:6894–6896CrossRefGoogle Scholar
  48. Wang L, Chen X, Wang X, Han X, Liu S, Zhao C (2011b) Electrochemical synthesis of gold nanostructure modified electrode and its development in electrochemical DNA biosensor. Biosens Bioel 30:151–157CrossRefGoogle Scholar
  49. Won BY, Yoon HC, Park HG (2008) Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode. Analyst 133:100–104CrossRefGoogle Scholar
  50. Zanardi C, Terzi F, Zanfrognini B, Pigani L, Seeber R, Lukkeri J, Aaritalo T (2009) Effective electrocatalytic system based on polyviologen and Au nanoparticles multilayer. Sens Act B 144:92–98CrossRefGoogle Scholar
  51. Zanardi C, Terzi F, Seeber R, Baldoli C, Licandro E, Maiorana S (2012) Peptide nucleic acid tagged with four lysine residues for amperometric genosensors. Artificial DNA 3:80–87Google Scholar
  52. Zhang K, Ma H, Zhang L, Zhang Y (2008) Fabrication of a sensitive impedance biosensor of DNA hybridization based on gold nanoparticles modified gold electrode. Electroanalysis 20:2127–2133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Istituto di Scienze e Tecnologie Molecolari del CNRMilanItaly
  3. 3.Dipartimento di Chimica Organica ed IndustrialeUniversità degli Studi di MilanoMilanItaly

Personalised recommendations