Skip to main content

Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions

Abstract

We report a new method to produce liquid suspensions of nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum (UHV) conditions. The water is injected from outside the vacuum as a molecular beam onto a substrate maintained at 77 K and forms an ice layer with a UHV vapour pressure. Molecular dynamics simulations confirm that the nanoparticles are soft-landed close to the surface of the growing ice layer. We show that the un-agglomerated size distribution within the liquid is similar to the gas-phase size distribution and demonstrate that the inclusion of surfactants in the injected water prevents agglomeration. The method allows the flexibility and tight size control available with gas-phase production methods to be applied to making nanoparticle suspensions with any desired properties. This is important for practical applications, especially in medicine. We have extended the method to include core–shell nanoparticles, in which there is flexible control over the core size and shell thickness and free choice of the material in either. Here, we report the production of suspensions of Cu, Ag and Au elemental nanoparticles and Fe@Au and Fe@Fe-oxide core–shell nanoparticles with diameters in the range 5–15 nm. We demonstrate the power of the method in practical applications in the case of Fe@Fe-oxide nanoparticles, which have a specific absorption rate of an applied oscillating magnetic field that is significantly higher than available Fe-oxide nanoparticle suspensions and the highest yet reported. These will thus have a very high-performance in the treatment of tumours by magnetic nanoparticle hyperthermia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alqudami A, Annapoorni S (2007) Metallic silver and iron nanoparticles prepared by exploding wire technique. Plasmonics 2:5

    Article  CAS  Google Scholar 

  2. Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 31:70

    Article  CAS  Google Scholar 

  3. Baker SH, Thornton SC, Keen AM, Preston TI, Norris C, Edmonds KW, Binns C (1997) The construction of a gas aggregation source for the preparation of mass-selected ultra-small metal particles. Rev Sci Instr 68:1853

    Article  CAS  Google Scholar 

  4. Baker SH, Thornton SC, Edmonds KW, Maher MJ, Norris C, Binns C (2000) Characterisation of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters. Rev Sci Instr 71:3178

    Article  CAS  Google Scholar 

  5. Baker SH, Roy M, Qureshi M, Binns C (2010) Probing atomic structure in magnetic core/shell nanoparticles using synchrotron radiation. J Phys Condens Matter 22:385301

    Article  CAS  Google Scholar 

  6. Baker SH, Roy M, Thornton SC, Binns C (2012) Realizing high magnetic moments in fcc Fe nanoparticles through atomic structure stretch. J Phys Condens Matter 24:176001

    Article  CAS  Google Scholar 

  7. Bellino MG, Calco EJ, Gordillo G (2004) Adsorption kinetics of charged thiols on gold nanoparticles. Phys Chem Chem Phys 6:424

    Article  CAS  Google Scholar 

  8. Binns C (2001) Nanoclusters deposited on surfaces. Surf Sci Rep 44:1

    Article  CAS  Google Scholar 

  9. Binns C (2010) Introduction to nanoscience and nanotechnology, Chapter 6. Wiley, Hoboken

    Book  Google Scholar 

  10. Binns C, Maher MJ, Pankhurst QA, Kechrakos D, Trohidou KN (2002) Magnetic behaviour of nanostructured films assembled from preformed Fe clusters embedded in Ag. Phys Rev B 66:184413

    Article  Google Scholar 

  11. Binsted N (1998) EXCURV98: Daresbury Laboratory computer program

  12. Boatman EM, Lisensky GC, Nordell KJ (2005) A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. J Chem Educ 82:1697

    Article  CAS  Google Scholar 

  13. Bönnemann H, Brijoux W, Brinkmann R, Matoussevitch N, Waldöfner N, Palina N, Modrow H (2003) A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles. Inorg Chim Acta 350:617

    Article  Google Scholar 

  14. Bouwen W, Thoen P, Vanhoutte F, Bouckaert S, Despa F, Weidele H, Silverans RE, Lievens P (2000) Production of bimetallic clusters by a dual-target dual-laser vaporization source. Rev Sci Instrum 71:54

    Article  CAS  Google Scholar 

  15. Coker VS, Telling ND, Van Der Laan G, Pattrick RAD, Pearce CI, Arenholz E, Tuna F, Winpenny REP, Lloyd JR (2009) Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. Proc Natl Acad Sci USA 3:1922

    CAS  Google Scholar 

  16. Dou Y, Zhigilei LV, Winograd N, Garrison BJ (2001) Explosive boiling of water films adjacent to heated surfaces: a microscopic description. J Phys Chem A 105:2748

    Article  CAS  Google Scholar 

  17. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221

    Article  CAS  Google Scholar 

  18. Filiponi A, Bocowski M, Bowron DT, Ansell S, De Panfilis S, Di Ciccio A, Itie J-P (2000) An experimental station for advanced research on condensed matter under extreme conditions at the European synchrotron radiation facility—BM29 beamline. Rev Sci Instrum 71:2422

    Article  Google Scholar 

  19. Fiorani D, Testa AM, Lucari F, D’Orazio F, Romero H (2002) Magnetic properties of maghemite nanoparticle systems: surface anisotropy and interparticle interaction effects. Physica B 320:122

    Article  CAS  Google Scholar 

  20. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983

    Article  CAS  Google Scholar 

  21. Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628

    Article  CAS  Google Scholar 

  22. Garcia-Martinez JC, Scott RWJ, Crooks RM (2003) Extraction of monodisperse palladium nanoparticles from dendrimer templates. J Am Chem Soc 125:11190

    Article  CAS  Google Scholar 

  23. Getzlaff M, Kleibert A, Methling R, Bansmann J, Meiwes-Broer K-H (2004) Mass-filtered ferromagnetic alloy clusters on surfaces. Surf Sci 566–568:332

    Article  Google Scholar 

  24. Granqvist C, Kish L, Marlow M (eds) (2005) Gas phase nanoparticle synthesis, Springer, Berlin. ISBN-13: 978-1402024436

  25. Guo L, Huang Q, Li XY, Yang S (2001) Iron nanoparticles:Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys 3:1661

    Article  CAS  Google Scholar 

  26. Haberland H, Karrais M, Mall M, Thurner Y (1992) Thin films from energetic cluster impact: a feasibility study. J Vac Sci Technol A 10:3266

    Article  CAS  Google Scholar 

  27. Haun JB, Yoon T-J, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Nanomed and Nanobiotech 2:291

    Article  CAS  Google Scholar 

  28. Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293:80

    Article  CAS  Google Scholar 

  29. Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919

    Article  CAS  Google Scholar 

  30. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 20:385214

    Article  Google Scholar 

  31. Hergt R, Dutz S, Zeisberger M (2010) Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology 21:015706

    Article  Google Scholar 

  32. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927

    Article  Google Scholar 

  33. Iles GN, Baker SH, Thornton SC, Binns C (2009) Enhanced capability in a gas aggregation source for magnetic nanoparticles. J Appl Phys 105:024306

    Article  Google Scholar 

  34. Johannsen M, Gneveckow U, Taymoorian M, Thiesen B, Waldoefner N, Scholz R, Jung K, Jordan A, Wust P, Loening S (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperther 23:315

    Article  CAS  Google Scholar 

  35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  36. Ju S-P (2005) A molecular dynamics simulation of the adsorption of water molecules surrounding an Au nanoparticle. J Chem Phys 122:094718

    Article  Google Scholar 

  37. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:1509

    Article  CAS  Google Scholar 

  38. Köth A, Koetz J, Appelhans D, Voit B (2008) “Sweet” gold nanoparticles with oligosaccharide- modified poly(ethyleneimine). Colloid Polym Sci 286:1317

    Article  Google Scholar 

  39. Kouchi A (1987) Vapour pressure of amorphous ice and its astrophysical implications. Nature 330:550

    Article  CAS  Google Scholar 

  40. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53

    Article  CAS  Google Scholar 

  41. Massalski TB, Murray JL, Bennet LH, Baker H (eds) (1986) Binary alloy diagrams. American Society for Metals, Metals Park, p 368

    Google Scholar 

  42. Mehdaoui B, Meffre A, Lacroix L-M, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322:L49

    Article  CAS  Google Scholar 

  43. Mosselmans JFW, Quinn PD, Dent AJ, Cavill SA, Moreno SD, Peach A, Leicester PJ, Keylock SJ, Gregory SR, Atkinson KD, Rosell JR (2009) I18—the microfocus spectroscopy beamline at the diamond light source. J Synchrotron Radiat 16:818

    Article  CAS  Google Scholar 

  44. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1

    Article  CAS  Google Scholar 

  45. Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D 42:224001

    Article  Google Scholar 

  46. Perez A, Melinon P, Dupuis V, Bardotti L, Masenelli B, Tournus F, Prevel B, Tuaillon-Combes J, Bernstein E, Tamion A, Blanc N, Tainoff D, Boisron O, Guiraud G, Broyer M, Pellarin M, Del Fatti N, Vallee F, Cottancin E, Lerme J, Vialle J-L, Bonnet C, Maioli P, Crut A, Clavier C, Rousset JL, Morfin F (2010) Functional nanostructures from clusters. Int J Nanotechnol 7:523

    Article  CAS  Google Scholar 

  47. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1

    Article  CAS  Google Scholar 

  48. Pratt A, Shah A, Lari L, Woffinden S, Tear SP, Binns C, Kröger R (2012) Initial-oxidation induced strain effects in Fe/Fe-oxide core-shell nanoparticles. Nat Mater (submitted)

  49. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370

    Article  CAS  Google Scholar 

  50. Rosi L, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547

    Article  CAS  Google Scholar 

  51. Solokov K, Follen M, Aaron J, Pavlova I, Malpica R, Lotan R, Richards-Kortum R (2003) Real- time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999

    Google Scholar 

  52. Spohr EJ (1998) Computer simulation of the structure of the electrochemical double layer. J Electroanal Chem 450:327

    Article  CAS  Google Scholar 

  53. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic nanocrystal superlattices. Science 287:1989

    Article  CAS  Google Scholar 

  54. Tenderholt A, Hedman B Hodgson KO (2007) PySpine: a modern, cross-platform program for the processing of raw averaged XAS edge and EXAFS data. 13th Int Conf.XAFS: AIP Conf Proc 882:105

  55. Tsang E (2008) Synthesis of clusters and nanoparticles by chemical methods in metallic nanoparticles. In: John Blackman (ed) Handbook of metal physics, vol 5. Elsevier, Amsterdam, chapter 4

  56. Yang Y, Matsubara S, Nogami M, Shi J (2007) Controlling the aggregation behavior of gold nanoparticles. Mater Sci Eng B 140:172

    Article  CAS  Google Scholar 

  57. Zhang G, Wei G, Zheng K, Li L, Xu D, Wang D, Xue Y, Su W (2010a) The synthesis of beta-SiC nanoparticles by high-energy mechanical ball milling and their photoluminescence properties. J Nanosci Nanotechnol 10:1951

    Article  CAS  Google Scholar 

  58. Zhang Y, Padhyay A, Sevilleja JE, Guerrant RI, Geddes CD (2010b) Interactions of fluorophores with iron-nanoparticles: metal-enhanced fluorescence. J Phys Chem C 114:7575

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Binns.

Additional information

This article is part of the topical collection on nanomaterials in energy, health and environment

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Binns, C., Prieto, P., Baker, S. et al. Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions. J Nanopart Res 14, 1136 (2012). https://doi.org/10.1007/s11051-012-1136-6

Download citation

Keywords

  • Magnetic nanoparticle hyperthermia
  • Gas phase synthesis
  • Core–shell nanoparticles