Skip to main content
Log in

Synthesis of superparamagnetic nanoparticles dispersed in spherically shaped carbon nanoballs

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, carbon nanoballs in spherical shape with diameter 70 ± 2 nm containing well-dispersed superparamagnetic magnetite/maghemite Fe3O4/γ-Fe2O3 nanoparticles of 5–10 nm in size were synthesised by a facile route using the radio frequency (rf) plasma in order to assist the pyrolysis of ferrocene. Ferrocene was placed in an inductively coupled rf plasma field without additional thermal heating to activate simultaneous sublimation and pre-pyrolysis processes. During this plasma activation, the resultant derivatives were carried by an argon gas stream into the hot zone of a resistance furnace (600 °C) for complete thermal decomposition. The deposition of the nanoballs could be observed in the hot zone of the furnace at a temperature of 600 °C. The synthesised nanoballs are highly dispersible in solvents that make them particularly suitable for different applications. Their morphology, composition and structure were characterized by high-resolution scanning and transmission electron microscopy, including selected area electron diffraction, electron energy loss spectroscopy and X-ray diffraction. Magnetic measurements demonstrated that the nanoballs possess superparamagnetic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acinto MJ, Santos OH, Jardim RF, Landers R, Rossi LM (2009) Preparation of recoverable Ru catalysts for liquid-phase oxidation and hydrogenation reactions. Appl Catal A 360:177–182

    Article  Google Scholar 

  • Barbeta VB, Jardim RF, Kiyohara PK, Effenberger FB, Rossi LM (2010) Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids. J Appl Phys 107:073913

    Article  Google Scholar 

  • Barnakov YA, Yu MH, Rosenzweig Z (2005) Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled Stober synthesis. Langmuir 21:7524–7527

    Article  CAS  Google Scholar 

  • Chen M, Kim YN, Li C, Cho SO (2008) Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures: a prospective multifunctional nanostructure platform. J Phys Chem C 112:6710–6716

    Article  CAS  Google Scholar 

  • Chu JH, Lin I (1994) Direct observation of Coloumb crystals and liquid in strongly coupled rf dusty plasmas. Phys Rev Lett 72:4009–4012

    Article  CAS  Google Scholar 

  • Chu Y, Zhang P, Hu J, Yang W, Wang C (2009) Synthesis of monodispersed Co(Fe)/carbon nanocomposite microspheres with very high saturation magnetization. J Phys Chem C 113:4047–4052

    Article  CAS  Google Scholar 

  • Colliex C, Manoubi T, Ortiz C (1991) Electron energy loss spectroscopy near edge fine structure in the iron-oxygen system. Phys Rev B 44:11402–11411

    Article  CAS  Google Scholar 

  • Detloff T, Sobisch T, Lerche D (2006) Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation. Part Part Syst Charact 23:184–187

    Article  Google Scholar 

  • Dimitrov DA, Wysin GM (1994) Effect of surface anisotropy on hysteresis in fine magnetic particles. Phys Rev B 50:3077–3084

    Article  CAS  Google Scholar 

  • Dimitrov DA, Wysin GM (1995) Magnetic properties of spherical fcc clusters with radial surface anisotropy. Phys Rev B 51:11947–11950

    Article  CAS  Google Scholar 

  • Dravid V, Host J, Teng M, Elliott B, Hwang J, Johnson D, Mason T, Weertman J (1995) Controlled-size nanocapsules. Nature 374:602

    Article  CAS  Google Scholar 

  • El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Büchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47:2821–2828

    Article  CAS  Google Scholar 

  • Fernández-Pacheco R, Arruebo M, Marquina C, Ibarra R, Arbiol J, Santamarìa J (2006) Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology 17:1188–1192

    Article  Google Scholar 

  • Frenkel J, Dorfman J (1930) Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126:274–275

    Article  Google Scholar 

  • Fuertes AB, Tartaj P (2007) Monodisperse carbon-polymer mesoporous spheres with magnetic functionality and adjustable pore-size distribution. Small 3:275–279

    Article  CAS  Google Scholar 

  • Golla-Schindler U, Hinrichs R, Bomati-Miguel O, Putnis A (2006) Determination of the oxidation state for iron oxide minerals by energy-filtering TEM. Micron 37:473–477

    Article  CAS  Google Scholar 

  • Hayashi Y, Tachibana K (1994) Observation of Coulomb-crystal formation from carbon particles grown in methane plasma. Jpn J Appl Phys 33:L804–L806

    Article  CAS  Google Scholar 

  • Hayashi T, Hirono S, Tomita M, Umemura S (1996) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381:772–774

    Article  Google Scholar 

  • Hayashi Y, Imano M, Mizobata Y, Takahashi K (2010) Development of fine-particles plasma for basic and applied research. Plasma Sources Sci Technol 19:034019

    Article  Google Scholar 

  • Huang Y, Lin J, Bando Y, Tang C, Zhi CY, Shi YG, Takayama-Muromachibc E, Golberg D (2010) BN nanotubes coated with uniformly distributed Fe3O4 nanoparticles: novel magneto-operable nanocomposites. J Mater Chem 20:1007–1011

    Article  CAS  Google Scholar 

  • Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60

    Article  CAS  Google Scholar 

  • Kittel C (1946) Theory of the structure of ferromagnetic domains in films and small particles. Phys Rev 70:965

    Article  CAS  Google Scholar 

  • Kotoulas A, Gjoka M, Simeonidis K, Tsiaoussis I, Angelakeris M, Kalogirou O, Dendrinou-Samara C (2011) The role of synthetic parameters in the magnetic behavior of relative large hcp Ni nanoparticles. J Nanopart Res 13:1897–1908

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterization, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Lu A, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Ma D, Veres T, Clime L, Normandin F, Guan J, Kingston D, Simard B (2007) Superparamagnetic Fe x O y @SiO2 core–shell nanostructures: controlled synthesis and magnetic characterization. J Phys Chem C 111:1999–2007

    Article  CAS  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  • Nahar M, Gallardo IF, Gleason KL, Becker MF, Keto JW, Kovar D (2011) Metal-on-oxide nanoparticles produced using laser ablation of microparticle aerosols. J Nanopart Res 13:3455–3464

    Article  CAS  Google Scholar 

  • Pereira C, Pereira AM, Quaresm P, Tavares PB, Pereira E, Araújo JP, Freire C (2010) Superparamagnetic γ-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Trans 39:2842–2854

    Article  CAS  Google Scholar 

  • Talapin DV, Rogach AL, Haase M, Weller H (2001) Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J Phys Chem B 105:12278–12285

    Article  CAS  Google Scholar 

  • Tartaj P, González-Carreño T, Serna CJ (2002) Synthesis of nanomagnets dispersed in colloidal silica with applications in chemical separation. Langmuir 18:4556–4558

    Article  CAS  Google Scholar 

  • Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R182–R197

    Article  CAS  Google Scholar 

  • Tcholakova S, Denkov ND, Ivanov IB, Campbell B (2002) Coalescence in β-lactoglobulin-stabilized emulsions: effects of protein adsorption and drop size. Langmuir 18:8960

    Article  CAS  Google Scholar 

  • Theisen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperth 24:467–474

    Article  Google Scholar 

  • Thomas H, Morfill GE, Demmel V, Goree J, Feuerbacher B, Mohlmann D (1994) Plasma crystal: Coulomb crystallization in a dusty plasma. Phys Rev Lett 73:652–655

    Article  CAS  Google Scholar 

  • Utech S, Scherer C, Krohne K, Carrella L, Rentschler E, Gasi T, Ksenofontov V, Felser C, Maskos M (2010) Magnetic polyorganosiloxane Core–Shell nanoparticles: synthesis, characterization and magnetic fractionation. J Magn 322:3519–3526

    Article  CAS  Google Scholar 

  • Vollath D, Szabó DV (1999) Coated nanoparticles: a new way to improved nanocomposites. J Nanopart Res 1:235–242

    Article  CAS  Google Scholar 

  • Vollath D, Szabó DV (2006) The microwave plasma process: a versatile process to synthesis nanoparticulate materials. J Nanopart Res 8:417–428

    Article  CAS  Google Scholar 

  • Vons V, Creyghton Y, Schmidt-Ott A (2006) Nanoparticle production using atmospheric pressure cold plasma. J Nanopart Res 8:721–728

    Article  CAS  Google Scholar 

  • Wang C, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131:8824–8832

    Article  CAS  Google Scholar 

  • Wu ZY, Gota S, Jollet F, Pollak M, Gautier-Soyer M, Natoli CR (1997) A molecular mechanics study of the cholesteryl acetate crystal: evaluation of interconversion among rg, rz and rd bond lengths. Phys Rev B 119:2570–2577

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sieglinde Pichl and Gesine Kreutzer for help with SEM and HRTEM measurements. Authors would like to express their gratitude to Dietmar Meiler and Alexander Schubert for the technical support during the experimental work. The authors thank the Deutsche Forschungsgemeinschaft DFG for financial support under the contract number HA 5133/4-1. Also it is worth noting that, the work was partly supported by the Deutsche Forschungsgemeinschaft DFG under contract number WO 1532/1-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.M.M. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, E., Hampel, S., Thomas, J. et al. Synthesis of superparamagnetic nanoparticles dispersed in spherically shaped carbon nanoballs. J Nanopart Res 14, 1118 (2012). https://doi.org/10.1007/s11051-012-1118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1118-8

Keywords

Navigation