Advertisement

Journal of Nanoparticle Research

, 14:1118 | Cite as

Synthesis of superparamagnetic nanoparticles dispersed in spherically shaped carbon nanoballs

  • E.M.M. Ibrahim
  • Silke Hampel
  • Jürgen Thomas
  • Diana Haase
  • A. U. B. Wolter
  • Vyacheslav O. Khavrus
  • Christine Täschner
  • Albrecht Leonhardt
  • Bernd Büchner
Research Paper

Abstract

In this work, carbon nanoballs in spherical shape with diameter 70 ± 2 nm containing well-dispersed superparamagnetic magnetite/maghemite Fe3O4/γ-Fe2O3 nanoparticles of 5–10 nm in size were synthesised by a facile route using the radio frequency (rf) plasma in order to assist the pyrolysis of ferrocene. Ferrocene was placed in an inductively coupled rf plasma field without additional thermal heating to activate simultaneous sublimation and pre-pyrolysis processes. During this plasma activation, the resultant derivatives were carried by an argon gas stream into the hot zone of a resistance furnace (600 °C) for complete thermal decomposition. The deposition of the nanoballs could be observed in the hot zone of the furnace at a temperature of 600 °C. The synthesised nanoballs are highly dispersible in solvents that make them particularly suitable for different applications. Their morphology, composition and structure were characterized by high-resolution scanning and transmission electron microscopy, including selected area electron diffraction, electron energy loss spectroscopy and X-ray diffraction. Magnetic measurements demonstrated that the nanoballs possess superparamagnetic characteristics.

Keywords

Plasma Magnetic nanoparticles Superparamagnetic iron oxide Carbon 

Notes

Acknowledgments

The authors are grateful to Sieglinde Pichl and Gesine Kreutzer for help with SEM and HRTEM measurements. Authors would like to express their gratitude to Dietmar Meiler and Alexander Schubert for the technical support during the experimental work. The authors thank the Deutsche Forschungsgemeinschaft DFG for financial support under the contract number HA 5133/4-1. Also it is worth noting that, the work was partly supported by the Deutsche Forschungsgemeinschaft DFG under contract number WO 1532/1-2.

References

  1. Acinto MJ, Santos OH, Jardim RF, Landers R, Rossi LM (2009) Preparation of recoverable Ru catalysts for liquid-phase oxidation and hydrogenation reactions. Appl Catal A 360:177–182CrossRefGoogle Scholar
  2. Barbeta VB, Jardim RF, Kiyohara PK, Effenberger FB, Rossi LM (2010) Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids. J Appl Phys 107:073913CrossRefGoogle Scholar
  3. Barnakov YA, Yu MH, Rosenzweig Z (2005) Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled Stober synthesis. Langmuir 21:7524–7527CrossRefGoogle Scholar
  4. Chen M, Kim YN, Li C, Cho SO (2008) Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures: a prospective multifunctional nanostructure platform. J Phys Chem C 112:6710–6716CrossRefGoogle Scholar
  5. Chu JH, Lin I (1994) Direct observation of Coloumb crystals and liquid in strongly coupled rf dusty plasmas. Phys Rev Lett 72:4009–4012CrossRefGoogle Scholar
  6. Chu Y, Zhang P, Hu J, Yang W, Wang C (2009) Synthesis of monodispersed Co(Fe)/carbon nanocomposite microspheres with very high saturation magnetization. J Phys Chem C 113:4047–4052CrossRefGoogle Scholar
  7. Colliex C, Manoubi T, Ortiz C (1991) Electron energy loss spectroscopy near edge fine structure in the iron-oxygen system. Phys Rev B 44:11402–11411CrossRefGoogle Scholar
  8. Detloff T, Sobisch T, Lerche D (2006) Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation. Part Part Syst Charact 23:184–187CrossRefGoogle Scholar
  9. Dimitrov DA, Wysin GM (1994) Effect of surface anisotropy on hysteresis in fine magnetic particles. Phys Rev B 50:3077–3084CrossRefGoogle Scholar
  10. Dimitrov DA, Wysin GM (1995) Magnetic properties of spherical fcc clusters with radial surface anisotropy. Phys Rev B 51:11947–11950CrossRefGoogle Scholar
  11. Dravid V, Host J, Teng M, Elliott B, Hwang J, Johnson D, Mason T, Weertman J (1995) Controlled-size nanocapsules. Nature 374:602CrossRefGoogle Scholar
  12. El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Büchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47:2821–2828CrossRefGoogle Scholar
  13. Fernández-Pacheco R, Arruebo M, Marquina C, Ibarra R, Arbiol J, Santamarìa J (2006) Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology 17:1188–1192CrossRefGoogle Scholar
  14. Frenkel J, Dorfman J (1930) Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126:274–275CrossRefGoogle Scholar
  15. Fuertes AB, Tartaj P (2007) Monodisperse carbon-polymer mesoporous spheres with magnetic functionality and adjustable pore-size distribution. Small 3:275–279CrossRefGoogle Scholar
  16. Golla-Schindler U, Hinrichs R, Bomati-Miguel O, Putnis A (2006) Determination of the oxidation state for iron oxide minerals by energy-filtering TEM. Micron 37:473–477CrossRefGoogle Scholar
  17. Hayashi Y, Tachibana K (1994) Observation of Coulomb-crystal formation from carbon particles grown in methane plasma. Jpn J Appl Phys 33:L804–L806CrossRefGoogle Scholar
  18. Hayashi T, Hirono S, Tomita M, Umemura S (1996) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381:772–774CrossRefGoogle Scholar
  19. Hayashi Y, Imano M, Mizobata Y, Takahashi K (2010) Development of fine-particles plasma for basic and applied research. Plasma Sources Sci Technol 19:034019CrossRefGoogle Scholar
  20. Huang Y, Lin J, Bando Y, Tang C, Zhi CY, Shi YG, Takayama-Muromachibc E, Golberg D (2010) BN nanotubes coated with uniformly distributed Fe3O4 nanoparticles: novel magneto-operable nanocomposites. J Mater Chem 20:1007–1011CrossRefGoogle Scholar
  21. Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60CrossRefGoogle Scholar
  22. Kittel C (1946) Theory of the structure of ferromagnetic domains in films and small particles. Phys Rev 70:965CrossRefGoogle Scholar
  23. Kotoulas A, Gjoka M, Simeonidis K, Tsiaoussis I, Angelakeris M, Kalogirou O, Dendrinou-Samara C (2011) The role of synthetic parameters in the magnetic behavior of relative large hcp Ni nanoparticles. J Nanopart Res 13:1897–1908CrossRefGoogle Scholar
  24. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterization, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  25. Lu A, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  26. Ma D, Veres T, Clime L, Normandin F, Guan J, Kingston D, Simard B (2007) Superparamagnetic FexOy@SiO2 core–shell nanostructures: controlled synthesis and magnetic characterization. J Phys Chem C 111:1999–2007CrossRefGoogle Scholar
  27. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRefGoogle Scholar
  28. Nahar M, Gallardo IF, Gleason KL, Becker MF, Keto JW, Kovar D (2011) Metal-on-oxide nanoparticles produced using laser ablation of microparticle aerosols. J Nanopart Res 13:3455–3464CrossRefGoogle Scholar
  29. Pereira C, Pereira AM, Quaresm P, Tavares PB, Pereira E, Araújo JP, Freire C (2010) Superparamagnetic γ-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Trans 39:2842–2854CrossRefGoogle Scholar
  30. Talapin DV, Rogach AL, Haase M, Weller H (2001) Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J Phys Chem B 105:12278–12285CrossRefGoogle Scholar
  31. Tartaj P, González-Carreño T, Serna CJ (2002) Synthesis of nanomagnets dispersed in colloidal silica with applications in chemical separation. Langmuir 18:4556–4558CrossRefGoogle Scholar
  32. Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R182–R197CrossRefGoogle Scholar
  33. Tcholakova S, Denkov ND, Ivanov IB, Campbell B (2002) Coalescence in β-lactoglobulin-stabilized emulsions: effects of protein adsorption and drop size. Langmuir 18:8960CrossRefGoogle Scholar
  34. Theisen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperth 24:467–474CrossRefGoogle Scholar
  35. Thomas H, Morfill GE, Demmel V, Goree J, Feuerbacher B, Mohlmann D (1994) Plasma crystal: Coulomb crystallization in a dusty plasma. Phys Rev Lett 73:652–655CrossRefGoogle Scholar
  36. Utech S, Scherer C, Krohne K, Carrella L, Rentschler E, Gasi T, Ksenofontov V, Felser C, Maskos M (2010) Magnetic polyorganosiloxane Core–Shell nanoparticles: synthesis, characterization and magnetic fractionation. J Magn 322:3519–3526CrossRefGoogle Scholar
  37. Vollath D, Szabó DV (1999) Coated nanoparticles: a new way to improved nanocomposites. J Nanopart Res 1:235–242CrossRefGoogle Scholar
  38. Vollath D, Szabó DV (2006) The microwave plasma process: a versatile process to synthesis nanoparticulate materials. J Nanopart Res 8:417–428CrossRefGoogle Scholar
  39. Vons V, Creyghton Y, Schmidt-Ott A (2006) Nanoparticle production using atmospheric pressure cold plasma. J Nanopart Res 8:721–728CrossRefGoogle Scholar
  40. Wang C, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131:8824–8832CrossRefGoogle Scholar
  41. Wu ZY, Gota S, Jollet F, Pollak M, Gautier-Soyer M, Natoli CR (1997) A molecular mechanics study of the cholesteryl acetate crystal: evaluation of interconversion among rg, rz and rd bond lengths. Phys Rev B 119:2570–2577CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • E.M.M. Ibrahim
    • 1
    • 2
  • Silke Hampel
    • 1
  • Jürgen Thomas
    • 1
  • Diana Haase
    • 1
  • A. U. B. Wolter
    • 1
  • Vyacheslav O. Khavrus
    • 1
    • 3
  • Christine Täschner
    • 1
  • Albrecht Leonhardt
    • 1
  • Bernd Büchner
    • 1
  1. 1.Leibniz Institute of Solid State and Material ResearchDresdenGermany
  2. 2.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.L.V. Pisarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations