Advertisement

Journal of Nanoparticle Research

, 14:1110 | Cite as

Hexagonal polytype of CuCrO2 nanocrystals obtained by hydrothermal method

  • M. Miclau
  • D. Ursu
  • S. Kumar
  • I. Grozescu
Research Paper

Abstract

We had first synthesized hexagonal 2H-CuCrO2 nanocrystals by hydrothermal method. The stability diagram for Cu–Cr–Na–H2O system allows preparing of nanocrystalline CuCrO2, either 2H or 3R pure phase, by a single step, low-temperature hydrothermal synthesis. 2H- and 3R-CuCrO2 quasi-hexagonal shape nanocrystals have shown a wide range of size distribution varying from about 20 to 40 nm. An unexpected result is that 2H-CuCrO2 phase was a low temperature phase in the hydrothermal synthesis. Also, a formation mechanism for the synthesis of CuCrO2 nanocrystal, 2H- and 3R-polytypes was proposed.

Keywords

Nanocrystal 2H-polytype Delafossite Hydrothermal Thermoelectric 

Notes

Acknowledgments

This study was supported by the strategic grant POSDRU ID77265 (2010), co-financed by the European Social Fund-Investing in People, within the Sectorial Operational Programme Human Resources Development 2007–2013 and Initial Training Network SOPRANO 214040, supported by the EU Seventh Framework Programme.

References

  1. Beverskog B, Puigdomenech I (1997a) Revised Pourbaix diagrams for copper at 25–300 °C. J Electrochem Soc 144:3476–3483CrossRefGoogle Scholar
  2. Beverskog B, Puigdomenech I (1997b) Revised Pourbaix diagrams for chromium at 25–300 °C. Corros Sci 39:43–57CrossRefGoogle Scholar
  3. Crottaz O, Kubel F, Schmid H (1996) Preparation of trigonal and hexagonal cuprous chromite and phase transition study based on single crystal structure data. J Solid State Chem 122:247–250CrossRefGoogle Scholar
  4. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942CrossRefGoogle Scholar
  5. Kumar S, Marinel S, Miclau M, Martin C (2012) Fast synthesis of CuCrO2 delafossite by monomode microwave heating. Mater Lett 70:40–43CrossRefGoogle Scholar
  6. Marquardt MA, Ashmore NA, Cann DP (2006) Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films 496:146–151CrossRefGoogle Scholar
  7. Monnier JR, Hanrahan MJ, Apai GA (1985) Study of the catalytically active copper species in the synthesis of methanol over Cu–Cr Oxide. J Catal 92:119–126CrossRefGoogle Scholar
  8. Nazri GA, Thackeray M, Ohzuku T (2000) Intercalation compounds for battery materials. The Electrochemical Society, Inc., PenningtonGoogle Scholar
  9. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. J Phys B 192:55–69CrossRefGoogle Scholar
  10. Sharma PA, Sugar JD, Medlin DL (2010) Influence of nanostructuring and heterogeneous nucleation on the thermoelectric figure of merit in AgSbTe2. J Appl Phys 107:113716–113724CrossRefGoogle Scholar
  11. Sheets WC, Mugnier E, Barnabé A, Marks TJ, Poeppelmeier KR (2006) Hydrothermal synthesis of delafossite-type oxides. Chem Mater 18:7–20CrossRefGoogle Scholar
  12. Singh K, Maignan A, Martin C, Simon C (2009) AgCrS2: a spin driven ferroelectric. Chem Mater 21:5007–5009CrossRefGoogle Scholar
  13. Van Tendeloo G, Garlea O, Darie C, Bougerol-Chaillout C, Bordet P (2001) The fine structure of YCuO2+x delafossite determined by synchrotron powder diffraction and electron microscopy. J Solid State Chem 156:428–436CrossRefGoogle Scholar
  14. Xu H, Lou T, Li Y (2004) Synthesis and characterize of trivalent chromium Cr(OH)3 and Cr2O3 microspheres. I Inorg Chem Commun 7:666–668CrossRefGoogle Scholar
  15. Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H (2001) Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure. Appl Phys Lett 78:1583–1585CrossRefGoogle Scholar
  16. Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103CrossRefGoogle Scholar
  17. Zhou S, Fang X, Deng Z, Li D, Dong W, Tao R, Meng G, Wang T, Zhu X (2008) Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals. J Cryst Growth 310:5375–5379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.National Institute for Research and Development in Electrochemistry and Condensed Matter Timisoara, Str. Plautius AndronescuTimisoaraRomania
  2. 2.Politehnica University of TimisoaraTimisoaraRomania

Personalised recommendations