Journal of Nanoparticle Research

, 14:1099 | Cite as

Achieving organic nanoparticles with redox-active capabilities: synthesis of gold nanoparticles in water as a proof-of-principle

  • Sara M. Mooi
  • Todd C. Sutherland
  • Belinda Heyne
Brief Communication


Herein, we present a unique approach to easily achieve redox-active nanosized organic particles in aqueous environment using a strategy based on ion association between large organic ions, namely tetraphenylborate anions and thiazole orange cations. The anionic tetraphenylborate associates tightly with the cationic redox-active thiazole orange producing a well-defined meta-stable organic nanoscale particle (73 ± 20 nm). These redox-active nanosized organic particles can act as seed sites for metal reductions and as a proof-of-concept, they were used to reduce gold(III) to gold nanoparticles in a neutral, aqueous environment at room temperature.


Organic nanoparticles Thiazole orange Tetraphenylborate Redox active Gold nanoparticle Green chemistry 



This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors would like to thank Mr. W. White for mass spectrometry.

Supplementary material

11051_2012_1099_MOESM1_ESM.doc (924 kb)
Supplementary material 1 (DOC 923 kb)


  1. Alvaro M, Cojocaru B, Ismail AA, Petrea N, Ferrer B, Harraz FA, Parvulescu VI, Garcia H (2010) Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl Catal B-Environ 99(1–2):191–197CrossRefGoogle Scholar
  2. Armitage B, Retterer J, Obrien DF (1993) Dimerization of cyanine dyes in water driven by association with hydrophobic borate anions. J Am Chem Soc 115(23):10786–10790CrossRefGoogle Scholar
  3. Ban ZH, Bosques CJ, Sasisekharan R (2008) A simple assay to probe disease-associated enzyme activity using glycosaminoglycan-assisted synthesized gold nanoparticles. Org Biomol Chem 6(23):4290–4292CrossRefGoogle Scholar
  4. Biver T, Boggioni A, Secco F, Turriani E, Venturini M, Yarnaoluk S (2007) Influence of cyanine dye structure on self-aggregation and interaction with nucleic acids: a kinetic approach to TO and BO binding. Arch Biochem Biophys 465(1):90–100CrossRefGoogle Scholar
  5. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782CrossRefGoogle Scholar
  6. Bwambok DK, El-Zahab B, Challa SK, Li M, Chandler L, Baker GA, Warner IM (2009) Near-infrared fluorescent nanoGUMBOS for biomedical imaging. ACS Nano 3(12):3854–3860CrossRefGoogle Scholar
  7. Chatterjee S, Gottschalk P, Davis PD, Schuster GB (1988) Electron-transfer reactions in cyanine borate ion-pairs—photopolymerization initiators sensitive to visible-light. J Am Chem Soc 110(7):2326–2328CrossRefGoogle Scholar
  8. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  9. Das S, Bwambok D, Ei-Zahab B, Monk J, de Rooy SL, Challa S, Li M, Hung FR, Baker GA, Warner IM (2010) Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent NanoGUMBOS. Langmuir 26(15):12867–12876CrossRefGoogle Scholar
  10. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72(22):5535–5541CrossRefGoogle Scholar
  11. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862CrossRefGoogle Scholar
  12. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Inte Ed 49(19):3280–3294CrossRefGoogle Scholar
  13. Handley DA (1989) Colloidal gold: principles, methods, and applications. Academic Press, LondonGoogle Scholar
  14. Hussain ST, Iqbal M, Mazhar M (2009) Size control synthesis of starch capped-gold nanoparticles. J Nanopart Res 11(6):1383–1391CrossRefGoogle Scholar
  15. Kaeser A, Schenning A (2010) Fluorescent nanoparticles based on self-assembled pi-conjugated systems. Adv Mater 22(28):2985–2997CrossRefGoogle Scholar
  16. Kasha M, Rawls HR, Ashraf El-Bayoumi M (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11(3–4):371–392CrossRefGoogle Scholar
  17. Kumar M, George SJ (2011) Green fluorescent organic nanoparticles by self-assembly induced enhanced emission of a naphthalene diimide bolaamphiphile. Nanoscale 3(5):2130–2133CrossRefGoogle Scholar
  18. Lau V, Heyne B (2010) Calix[4]arene sulfonate as a template for forming fluorescent thiazole orange H-aggregates. Chem Commun 46(20):3595–3597CrossRefGoogle Scholar
  19. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426Google Scholar
  20. Lovell JF, Jin CS, Huynh E, Jin HL, Kim C, Rubinstein JL, Chan WCW, Cao WG, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10(4):324–332CrossRefGoogle Scholar
  21. Mann S, Shenton W, Li M, Connolly S, Fitzmaurice D (2000) Biologically programmed nanoparticle assembly. Adv Mater 12(2):147–150CrossRefGoogle Scholar
  22. Masuhara H, Nakanishi H, Sasaki K (2003) Single organic nanoparticles. Springer, New YorkCrossRefGoogle Scholar
  23. McGilvray KL, Decan MR, Wang DS, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128(50):15980–15981CrossRefGoogle Scholar
  24. Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22(13):5882–5887CrossRefGoogle Scholar
  25. Ou ZM, Yao H, Kimura K (2007a) Organic nanoparticles of cyanine dye in aqueous solution. Bull Chem Soc Jpn 80(2):295–302CrossRefGoogle Scholar
  26. Ou ZM, Yao H, Kimura K (2007b) Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation. J Photochem Photobiol, A 189(1):7–14CrossRefGoogle Scholar
  27. Peng S, McMahon JM, Schatz GC, Gray SK, Sun YG (2010) Reversing the size-dependence of surface plasmon resonances. Proc Natl Acad Sci 107(33):14530–14534CrossRefGoogle Scholar
  28. Silva GL, Ediz V, Yaron D, Armitage BA (2007) Experimental and computational investigation of unsymmetrical cyanine dyes: understanding torsionally responsive fluorogenic dyes. J Am Chem Soc 129(17):5710–5718CrossRefGoogle Scholar
  29. Yang XQ, Zaitsev A, Sauerwein B, Murphy S, Schuster GB (1992) Penetrated ion-pairs—photochemistry of cyanine dyes within organic borates. J Am Chem Soc 114(2):793–794CrossRefGoogle Scholar
  30. Yao H, Ashiba K (2011) Highly fluorescent organic nanoparticles of thiacyanine dye: a synergetic effect of intermolecular H-aggregation and restricted intramolecular rotation. RSC Adv 1(5):834–838CrossRefGoogle Scholar
  31. Yao H, Yamashita M, Kimura K (2009) Organic styryl dye nanoparticles: synthesis and unique spectroscopic properties. Langmuir 25(2):1131–1137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sara M. Mooi
    • 1
  • Todd C. Sutherland
    • 1
  • Belinda Heyne
    • 1
  1. 1.Chemistry DepartmentUniversity of CalgaryCalgaryCanada

Personalised recommendations