Advertisement

Journal of Nanoparticle Research

, 14:1081 | Cite as

Platinum nanoparticles incorporated in silsesquioxane for use in LbL films for the simultaneous detection of dopamine and ascorbic acid

  • Vagner dos Santos
  • Cliciane Guadalupe de Jesus
  • Monalisa dos Santos
  • Carla Daniele Canestraro
  • Valtencir Zucolotto
  • Sérgio Toshio Fujiwara
  • Jarem Raul Garcia
  • Christiana Andrade Pessoa
  • Karen Wohnrath
Research Paper

Abstract

We describe the preparation of platinum nanoparticles (PtNPs) using the 3-n-propylpyridinium silsesquioxane chloride (SiPy+Cl) as a nanoreactor and stabilizer. The formation of PtNPs was monitored by UV–Vis spectroscopy by measuring the decrease in the intensity of the band at 375 nm, which is attributed to the electronic absorption of PtCl6 2− ions. TEM images of Pt-SiPy+Cl nanohybrid indicated an average size of 3–40 nm for PtNPs. The Pt-SiPy+Cl was used as a polycation in the preparation of layer-by-layer films (LbL) on a glass substrate coated with fluorine-doped tin oxide (FTO) alternating with the polyanion poly(vinyl sulfonic acid) (PVS). The films were electrochemically tested in sulfuric acid to confirm the deposition of Pt-SiPy+Cl onto the LbL films, observing the adsorption and desorption of hydrogen (E pa = 0.1 V) and by the redox process of formation for PtO with E pa = 1.3 V and E pc = 0.65 V. FTIR and Raman spectra confirmed the presence of the PVS and Pt-SiPy+Cl in the LbL films. A linear increase in the absorbance in the UV–Vis spectra of the Pt-SiPy+Cl at 258 nm (π → π* transition of the pyridine groups) with a number of Pt-SiPy+Cl/PVS or PVS/SiPy+Cl bilayers (R = 0.992) was observed. These LbL films were tested for the determination of dopamine (DA) in the presence of ascorbic acid (AA) with a detection limit (DL) on the order of 2.6 × 10−6 mol L−1 and a quantification limit (QL) of 8.6 × 10−6 mol L−1. The films exhibited a good repeatability and reproducibility, providing a potential difference of 550 mV for the oxidation of DA with AA interferent.

Keywords

Silsesquioxane polymer Platinum nanoparticles LbL films Dopamine and ascorbic acid 

Notes

Acknowledgments

The authors wish to thank CNPq and INEO (Brazil) for their financial support of this work.

References

  1. Arguello J, Magosso HA, Canevari TC, Landers R (2011) Activity of SiDbCl in the electrooxidation of ascorbic acid, dopamine, and uric acid. Electroanalysis 23:334–338. doi: 10.1002/elan.201000390 CrossRefGoogle Scholar
  2. Crespilho FN, Zucolotto V, Brett CMA, Oliveira ON Jr, Nart FC (2006a) Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B 110:17478–17483. doi: 10.1021/jp062098v CrossRefGoogle Scholar
  3. Crespilho FN, Huguenin F, Zucolotto V, Olivi P, Nart FC, Oliveira ON Jr (2006b) Dendrimers as nanoreactors to produce platinum nanoparticles embedded in layer-by-layer films for methanol-tolerant cathodes. Electrochem Commun 8:348–352. doi: 10.1016/j.elecom.2005.12.003 CrossRefGoogle Scholar
  4. Dafinone MI, Feng G, Brugarolas T, Tettey KE, Lee D (2011) Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. ACS Nano 5:5078–5087. doi: 10.1021/nn201167j CrossRefGoogle Scholar
  5. Decher G, Lvov Y, Schmitt J (1994) Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films. Thin Solid Films 244:772–777. doi: 10.1016/0040-6090(94)90569-X CrossRefGoogle Scholar
  6. Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman frequencies of organic compounds. Wiley-Interscience, New YorkGoogle Scholar
  7. Eiras C, Passos ING, Brito ACF, Santos JR, Zucolotto V, Oliveira ON Jr, Kitagawa IL, Constantino CJL, Cunha HN (2007) Nanocompósitos Eletroativos de Poli-o-metoxianilina e Polissacarídeos Naturais. Quim Nova 30:1158–1162. doi: 10.1590/S0100-40422007000500020 CrossRefGoogle Scholar
  8. Fujiwara ST, Pessoa CA, Gushikem Y (2003) Hexacyanoferrate ion adsorbed on propylpyridiniumsilsesquioxane polymer film-coated SiO2/Al2O3: use in an electrochemical oxidation study of cysteine. Electrochim Acta 48:3625–3631. doi: 10.1016/S0013-4686(03)00483-3 CrossRefGoogle Scholar
  9. Handke M, Kowalewska A (2011) Siloxane and silsesquioxane molecules—precursors for silicate materials. Spectrochimica Acta Part A 79:749–757. doi: 10.1016/j.saa.2010.08.049 CrossRefGoogle Scholar
  10. Inaba M, Ando M, Hatanaka A, Nomoto AK, Matsuzawa K, Tasaka A, Kinumoto T, Iriyama Y, Ogumi Z (2006) Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. Electrochim Acta 52:1632–1638. doi: 10.1016/j.electacta.2006.03.094 CrossRefGoogle Scholar
  11. Iost RM, Crespilho FN (2012) Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics. Biosens Bioelectron 3:1–10. doi: 10.1016/j.bios.2011.10.040 CrossRefGoogle Scholar
  12. Jesus CG, Forte CMS, Wohnrath K, Pessoa CA, Soares JES, Fujiwara ST, Neto PL, Correia AN (2011a) Electroanalytical performance of (SiPy+Cl/CuTsPc)5 LbL film for detecting promethazine hydrochloride. Electroanalysis 23:1814–1820. doi: 10.1002/elan.201100202 CrossRefGoogle Scholar
  13. Jesus CG, dos Santos V, Canestraro CD, Zucolotto V, Fujiwara ST, Gushikem Y, Wohnrath K, Pessoa CA (2011b) Silsesquioxane as a new building block material for modified electrodes fabrication and application as neurotransmitters sensors. J Nanosci Nanotechnol 11:3499–3508. doi: 10.1166/jnn.2011.3733 CrossRefGoogle Scholar
  14. Komathi S, Gopalan AI, Lee KP (2009) Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase. Biosens Bioelectron 24:3131–3134. doi: 10.1016/j.bios.2009.03.013 CrossRefGoogle Scholar
  15. Kowalewska A, Fortuniak W, Handke B (2009) New hybrid silsesquioxane materials with sterically hindered carbosilane side groups. J Organomet Chem 694:1345–1353. doi: 10.1016/j.jorganchem.2008.12.027 CrossRefGoogle Scholar
  16. Liu WC, Yang CC, Chen WC, Dai BT, Tsai MS (2002) The structural transformation and properties of spin-on poly(silsesquioxane) films by thermal curing. J Non-Cryst Solids 311:233–240. doi: 10.1016/S0022-3093(02)01373-X CrossRefGoogle Scholar
  17. Montenegro MCBSM, Sales MGF (2000) Flow-injection analysis of dopamine in injections with a periodate-selective electrode. J Pharm Sci 89:876–884. doi: 10.1002/1520-6017(200007)89:7<876:AID-JPS4>3.0.CO;2-R CrossRefGoogle Scholar
  18. Neela P, Jayant M, Ashok R (2009) LbL fabricated poly(styrene sulfonate)/TiO2 multilayer thin films for environmental applications. Appl Mater Interfaces 1:2684–2693. doi: 10.1021/am900566n CrossRefGoogle Scholar
  19. Nguyen TA, Männle F, Gregersen ØW (2012) Polyethylene/octa-(ethyloctadeca-10,13 dienoamide)silsesquioxaneblends and theadhesionstrengthtopaperboard. Int J Adhes Adhes 38:117–124. doi: 10.1016/j.ijadhadh.2012.05.002 CrossRefGoogle Scholar
  20. Peng Y, Cullis T, Inkson B (2009) Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett 9:91–96. doi: 10.1021/nl8025339 CrossRefGoogle Scholar
  21. Schlicke H, Schröder JH, Trebbin M, Petrov A, Ijeh M, Weller H, Vossmeyer T (2011) Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating. Nanotechnology 22:305303–305308. doi: 10.1088/0957-4484/22/30/305303 CrossRefGoogle Scholar
  22. Shankar SS, Swamy BEK, Chandra U, Manjunatha JG, Sherigara BS (2009) Simultaneous determination of dopamine, uric acid and ascorbic acid with CTAB modified carbon paste electrode. Int J Electrochem Sci 4:592–601Google Scholar
  23. Šnejdárková M, Poturnayová A, Rybár P, Lhoták P, Himl M, Flídrová K, Hianik T (2010) High sensitive calixarene-based sensor for detection of dopamine by electrochemical and acoustic methods. Bioelectrochemistry 80:55–61. doi: 10.1016/j.bioelechem.2010.03.006 CrossRefGoogle Scholar
  24. Srivastava S, Ball V, Podsiadlo P, Lee J, Ho P, Kotov NA (2008) Reversible loading and unloading of nanoparticles in “exponentially” growing polyelectrolyte LBL films. J Am Chem Soc 130:3748–3749. doi: 10.1021/ja7110288 CrossRefGoogle Scholar
  25. Srivastava S, Podsiadlo P, Critchley K, Zhu J, Qin M, Shim BS, Kotov NA (2009) Single-walled carbon nanotubes spontaneous loading into exponentially grown LBL films. Chem Mater 21:4397–4400. doi: 10.1021/cm900773v CrossRefGoogle Scholar
  26. Stoyanova A, Ivanova S, Tsakova V, Bund A (2011) Au nanoparticle–polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochim Acta 56:3693–3699. doi: 10.1016/j.electacta.2010.09.054 CrossRefGoogle Scholar
  27. Ticianelli EA, Gonzalez ER (1998) Eletroquímica. Edusp, São PauloGoogle Scholar
  28. Wang P, Li Y, Huang X, Wang L (2007) Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta 73:431–437. doi: 10.1016/j.talanta.2007.04.022 CrossRefGoogle Scholar
  29. Ye H, Crooks RM (2005) Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. J Am Chem Soc 127:4930–4934. doi: 10.1021/ja0435900 CrossRefGoogle Scholar
  30. Zhang M, Gong K, Zhang H, Mao L (2005) Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens Bioelectron 20:1270–1276. doi: 10.1016/j.bios.2004.04.018 CrossRefGoogle Scholar
  31. Zhang W, Zhang A, Guan Y, Zhang Y, Zhu XX (2011) Silver-loading in uncrosslinked hydrogen-bonded LBL films: structure change and improved stability. J Mater Chem 21:548–555. doi: 10.1039/C0JM02369H CrossRefGoogle Scholar
  32. Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z (2005) Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66:51–57. doi: 10.1016/j.talanta.2004.09.019 CrossRefGoogle Scholar
  33. Zhuang Z, Li J, Xu R, Xiao D (2011) Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int J Electrochem Sci 6:2149–2161Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Vagner dos Santos
    • 1
  • Cliciane Guadalupe de Jesus
    • 1
  • Monalisa dos Santos
    • 1
  • Carla Daniele Canestraro
    • 2
  • Valtencir Zucolotto
    • 3
  • Sérgio Toshio Fujiwara
    • 1
  • Jarem Raul Garcia
    • 1
  • Christiana Andrade Pessoa
    • 1
  • Karen Wohnrath
    • 1
  1. 1.Department of ChemistryUniversidade Estadual de Ponta Grossa, UEPGPonta GrossaBrazil
  2. 2.Department of PhysicsUniversidade Federal do Paraná, UFPRCuritibaBrazil
  3. 3.IFSC, Universidade de São PauloSão CarlosBrazil

Personalised recommendations