Relationship between crystal structure and luminescent properties of novel red emissive BiVO4:Eu3+ and its photocatalytic performance

Research Paper


Crystalline BiVO4:Eu3+ nanomaterials have been successfully synthesized by four different methods: co-precipitation, hydrothermal, solvothermal, and reverse micelles. The relationship between crystal structure and luminescent properties was studied by X-ray diffraction and steady-state fluorescence. The data indicate that Eu3+ 5D0 → 7F2 red luminescence at 618 nm can be excited by visible light at 466 nm in BiVO4 host. Furthermore, it has been found that the encapsulation of europium(III) in tetragonal phase (BiVO4) results in enhanced luminescence intensities compared with monoclinic phase. Transmission electron microscopy showed rods with sizes ranging from nanometer to micrometer and nanospheres can be obtained under different experimental conditions.


Luminescence Bismuth vanadate Europium Crystal structure 



Q. M. appreciates National Natural Science Foundation of China (21002035) and Start fund of Guangdong Talents C10208.

Supplementary material

11051_2012_1076_MOESM1_ESM.doc (268 kb)
Supplementary material 1 (DOC 267 kb)


  1. Anitha M, Ramakrishnan P, Chatterjee A, Alexander G, Singh H (2002) Spectral properties and emission efficiencies of GdVO4 phosphors. Appl Phys A 74:153–162CrossRefGoogle Scholar
  2. Bierlein JD, Sleight AW (1975) Ferroelasticity in BiVO4. Solid State Commun 16:69–70CrossRefGoogle Scholar
  3. David WIF (1983) Ferroelastic phase transition in BiVO4: III. Thermodynamics. J Phys C Solid State Phys 16:5093–5118CrossRefGoogle Scholar
  4. Deki S, Lizuka S, Mizuhata M, Kajinami A (2005) Fabrication of nanostructured materials from aqueous solution by liquid phase deposition. J Electroanal Chem 584:38–43CrossRefGoogle Scholar
  5. Feng X, Yang L, Zhang NC, Liu YL (2010) A facile one-pot hydrothermal method to prepare europium-doped titania hollow phosphors and their sensitized luminescence properties. J Alloys Compd 506:728–733CrossRefGoogle Scholar
  6. Frost RL, Dermot A, Henry ML et al (2006) Raman spectroscopy of three polymorphs of BiVO4 clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3− bearing minerals namibite, pottsite and schumacherite. J Raman Spectrosc 37:722–732CrossRefGoogle Scholar
  7. Hirota K, Komatsu G, Yamashita M, Takemura H, Yamaguchi O (1992) Formation, characterization and sintering of alkoxy-derived bismuth vanadate. Mater Res Bull 27:823–830CrossRefGoogle Scholar
  8. Huang HH, Yan B (2006) Sol-gel synthesis of YxGd2_xSiO5:Eu3+ phosphors derived from the in situ assembly of multicomponent hybrid precursors. Opt Mater 28:556–559CrossRefGoogle Scholar
  9. Huignard A, Gacoin T, Boilot JP (2000) Synthesis and luminescence properties of colloidal YVO4:Eu phosphors. Chem Mater 12:1090–1094CrossRefGoogle Scholar
  10. Jia CJ, Sun LD, Luo F, Jiang XC, Wei LH, Yan CH (2004) Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals. Appl Phys Lett 84:5305–5307CrossRefGoogle Scholar
  11. Jia CJ, Sun LD, Yan ZG, Pang YC, Lu SZ, Yan CH (2010) Monazite and zircon type LaVO4:Eu nanocrystals—synthesis, luminescent properties, and spectroscopic identification of the Eu3+ sites. Eur J Inorg Chem 2626–2635. doi: 10.1002/ejic.201000038
  12. Justel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103CrossRefGoogle Scholar
  13. Kohtani S, Makino S (2002) Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: comparison between BiVO4 and TiO2 photocatalysts. Chem Lett 7:660–661CrossRefGoogle Scholar
  14. Kudo A, Omori K, Kato H (1999) Novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467CrossRefGoogle Scholar
  15. Lee GH, Kim TH, Yoon CL, Kang SH (2008) Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor for white LEDs. J Lumin 128:1922–1926CrossRefGoogle Scholar
  16. Leroy CM, Cardinal T, Jubera V, Treguer-Delapierre M, Majimel J, Manaud JP, Backov R, Boissière C, Grosso D, Sanchez C, Viana B, Pellé F (2008) Europium-doped mesoporous titania thin films: rare-earth locations and emission fluctuations under illumination. Chem Phys Chem 9:2077–2084CrossRefGoogle Scholar
  17. Manolikas C, Amelinckx S (1980) Ferroelastic domains in BiVO4. Phys Status Solidif 60:167–172CrossRefGoogle Scholar
  18. Molina C, Dahmouche K, Santilli CV, Craievich AF, Ribeiro SJL (2001) Structure and luminescence of Eu3+-doped class I siloxane-poly(ethylene glycol) hybrids. Chem Mater 13:2818–2823CrossRefGoogle Scholar
  19. Neeraj S, Kijima N, Cheetham AK (2004) Novel red phosphors for solid state lighting; the system BixLn1−xVO4; Eu3+/Sm3+ (Ln = Y, Gd). Solid State Commun 131:65–69CrossRefGoogle Scholar
  20. Ren L, Jin L, Wang JB, Yang F, Qiu MQ, Yu Y (2009) Template-free synthesis of BiVO4 nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light. Nanotechnology 20:15603CrossRefGoogle Scholar
  21. Riwotzki K, Haase M (1998) Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy). J Phys Chem B 102:10129–10135CrossRefGoogle Scholar
  22. Sayama K, Nomura A, Zou ZG, Abe R, Abe Y, Arakawa H (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 23:2908–2910CrossRefGoogle Scholar
  23. Shantha K, Varma KBR (1999) Preparation and characterization of nanocrystalline powders of bismuth vanadate. Mater Sci Eng B 60:66–75CrossRefGoogle Scholar
  24. Smith HM (2002) Toxicology and ecotoxicology issues with high performance pigments. In: High performance pigments Wiley, Weinheim, p 411–417Google Scholar
  25. Sun YF, Xie Y, Wu CZ, Long R (2010) First experimental identification of BiVO4·0.4H2O and its evolution mechanism to final monoclinic BiVO4. Cryst Growth Des 10:602–607CrossRefGoogle Scholar
  26. Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with Scheelite structure and their photocatalytic properties. Chem Mater 13:4624–4628CrossRefGoogle Scholar
  27. Yan B, Su XQ (2006) Chemical co-precipitation synthesis of luminescent BixY1−xVO4:RE (RE = Eu3+, Dy3+, Er3+) phosphors from hybrid precursors. J Non Cryst Solids 352:30–31Google Scholar
  28. Yu JQ, Kudo A (2006) Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv Funct Mater 16:2163–2169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Qianming Wang
    • 1
    • 2
  • Yan Li
    • 2
  • Zhi Zeng
    • 1
    • 2
  • Shuting Pang
    • 2
  1. 1.Key Laboratory of Theoretical Chemistry of Environment, Ministry of EducationSchool of Chemistry and Environment, South China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Chemistry and Environment, South China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations