Skip to main content
Log in

Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene–maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core–shell nanoparticles with 20–60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abang S, Chan ES, Poncelet D (2012) Effects of process variables on the encapsulation of oil in alginate capsules using an inverse gelation technique. J Microencapsul. doi:10.3109/02652048.2012.655331

    Google Scholar 

  • Adamiec J, Marciniak E (2004) Microencapsulation of oil/matrix/water system during spray drying process. In: Drying 2004, proceedings of the 14th international drying symposium, Sao Paulo, Brazil, pp 2043–2050

  • Alkan C, Sari A, Uzun O (2006) Poly(ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage. J Am Inst Chem Eng 52:3310–3314

    Article  CAS  Google Scholar 

  • Bae KH, Lee Y, Park TG (2007) Oil-encapsulating PEO–PPO–PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8:650–656

    Article  CAS  Google Scholar 

  • Baeten V, Meurens M (1996) Detection of virgin olive oil adulteration by Fourier Transform Raman Spectroscopy. J Agric Food Chem 44:2225–2230

    Google Scholar 

  • Braun D, Sauerwein R, Hellmann GP (2001) Polymeric surfactants from styrene-co-maleic anhydride copolymers. Macromol Symp 163:59–66

    Article  CAS  Google Scholar 

  • Calvo P, Hernandez T, Lozano M, Gonzalez-Gomez D (2010) Microencapsulation of extra-virgin olive oil by spray-drying: influence of wall material and olive quality. Eur J Lipid Sci Technol 112:852–858

    Article  Google Scholar 

  • Domian E, Wqsak I (2008) Encapsulation of rapeseed oil based on spray drying method. Pol J Food Nutr Sci 58:477–483

    CAS  Google Scholar 

  • Esumi K (2003) Dendrimers for nanoparticle synthesis and dispersion stabilization. Top Curr Chem 227:31–52

    Article  CAS  Google Scholar 

  • Fairhurst D, Loxley A (2008) Micro- and nano-encapsulation of water- and oil-soluble actives for cosmetic and pharmaceutical applications. In: Wiechers JW (ed) Science and applications of skin delivery systems. Allured Publishing, Carol Stream, pp 313–336

    Google Scholar 

  • Frere W, Danchier L, Gramain P (1998) Preparation of microcapsules by interfacial polymerization. Eur Polym J 34:193–199

    Article  CAS  Google Scholar 

  • Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, Dumoulin E (2006) Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng 75:35–37

    Article  Google Scholar 

  • Glenn GM, Klamczynski AP, Woods DF, Chiou BS, Orts WJ, Imam SH (2010) Encapsulation of plant oils in porous starch microspheres. J Agric Food Chem 58:4180–4184

    Article  CAS  Google Scholar 

  • Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202

    Article  CAS  Google Scholar 

  • Hong Y, Xin-shi G (2000) Preparation of polyethylene–paraffin compound as a form-stable solid–liquid phase change material. Sol Energy Mater Cells 64:37–44

    Article  CAS  Google Scholar 

  • Horie M, Yanagisawa H, Sugawara M (2007) Fluorometric immunoassay based on pH-sensitive dye-encapsulating liposomes and gramicidin channels. Anal Biochem 369:192–201

    Article  CAS  Google Scholar 

  • Hsieh WC, Chang CP, Gao YL (2006) Controlled release properties of chitosan encapsulated volatile citronella oil microcapsules by thermal treatments. Colloid Surf B 53:209–214

    Article  CAS  Google Scholar 

  • Inaba H, Tu P (1997) Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid–liquid phase change material. Heat Mass Transf 32:307–312

    Article  CAS  Google Scholar 

  • Jafari SM, Assadpoor E, He Y, Bhandari B (2008a) Encapsulation efficiency of food flavours and oils during spray drying. Dry Technol 26:816–835

    Article  Google Scholar 

  • Jafari SM, Assadpoor E, Bhandani Y, He Y (2008b) Nano-particle encapsulation of fish oil by spray drying. Food Res Int 41:172–183

    Article  CAS  Google Scholar 

  • Jovanovic AV, Underhill RS, Bucholz TL, Duran RS (2005) Oil core and silica shell nanocapsules: towards controlling the size and the ability to sequester hydrophobic compounds. Chem Mater 17:3375–3383

    Article  CAS  Google Scholar 

  • Kim EY, Kim HD (2005) Preparation and properties of micro-encapsulated octadecane with waterborne polyurethane. J Appl Polym Sci 96:1596–1604

    Article  CAS  Google Scholar 

  • Kim BS, Tation TA (2007) Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants. Langmuir 23:2198–2202

    Article  CAS  Google Scholar 

  • Klaypradit W, Huang YW (2008) Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT Food Sci Technol 41:1133–1139

    Article  CAS  Google Scholar 

  • Landfester K (2009) Miniemulsion polymerization and structure of polymer and hybrid nanoparticles. Angew Chem 48:4488–4507

    Article  CAS  Google Scholar 

  • Lee CY, Yu H, Kim ES (2007) Microreactions using nanoliter droplets with oil encapsulation. In: IEEE 20th international conference on micro electro mechanical systems, pp 81–84

  • Leelajariyakul S, Noguchi H, Kiatkamjornwong S (2008) Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Prog Org Coat 62:145–161

    Article  CAS  Google Scholar 

  • Liu X, Liu H, Wang S, Zhang L, Cheng H (2006a) Preparation and thermal properties of form stable paraffin phase change materials encapsulation. Energy Convers Manag 47:2515–2522

    Article  CAS  Google Scholar 

  • Liu HY, Cao K, Huang Y, Yao Z, Li BG, Hu GH (2006b) Kinetics and simulation of the imidization of poly(styrene-co-maleic anhydride) with amines. J Appl Polym Sci 100:2744–2749

    Article  CAS  Google Scholar 

  • Luo Y, Gu H (2006) A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization. Macromol Rapid Commun 27:21–25

    Article  CAS  Google Scholar 

  • Luo Y, Gu H (2007) Nanoencapsulation via interfacially confined reversible addition fragmentation transfer (RAFT) miniemulsion polymerization. Polymer 48:3262–3272

    Article  CAS  Google Scholar 

  • Luo Y, Zhou X (2004) Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. J Polym Sci A 42:2145–2154

    Article  CAS  Google Scholar 

  • Malardier-Jugroot C, Van de Ven TGM, Whitehead MA (2005) Linear conformation of poly(styrene-alt-maleic anhydride) capable of self-assembly: a result of chain stiffening by internal hydrogen bonds. J Phys Chem B 109:7022–7032

    Article  CAS  Google Scholar 

  • Martin A, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation process with supercritical fluids: applications with essential oils. Open Chem Eng J 4:31–41

    Article  CAS  Google Scholar 

  • Martinez A, Gonzalez C, Porras M, Gutierez JM (2005) Nano-sized latex particles obtained by emulsion polymerization using an amphiphilic block copolymer as surfactant. Colloid Surf A 270–271:67–71

    Article  Google Scholar 

  • Mazur M (2008) Polypyrrole containers grown on oil microdroplets: encapsulation of fluorescent dyes. Langmuir 24:10414–10420

    Article  CAS  Google Scholar 

  • Mizuno K, Taguchi Y (2005) The effect of the surfactant absorption layer on the growth rate of the polyurethane capsule shell. J Chem Eng Jpn 38:45–48

    Article  CAS  Google Scholar 

  • Mogridge DJ, Phipps JS, Rogan KR, Skuse DR (2002) Pigment dispersion technology for the paper industry. In: Skuse DRS (ed) Specialty chemicals in mineral processing. Royal Society of Chemistry, Cambridge, pp 55–67

    Chapter  Google Scholar 

  • Moore E, Pickelman D (1986) Synthesis of styrene/maleimide copolymers and physical properties thereof. Ind Eng Chem Prod Res Dev 25:603–609

    Article  CAS  Google Scholar 

  • Mu B, Shen R, Liu P (2009) Crosslinked polymeric nanocapsules from polymer brushes grafted silica nanoparticles via surface-initiated atom transfer radical polymerization. Colloid Surf B 74:511–515

    Article  CAS  Google Scholar 

  • Muik B, Lendl B, Molina-Diaz A, Ayora MJ (2005) Canada, direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem Phys Lipid 134:173–182

    Article  CAS  Google Scholar 

  • Nguyen D, Zondanos HS, Farrugia JM, Serelis AK, Such CH, Hawkett BS (2008) Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers. Langmuir 24:2140–2150

    Article  CAS  Google Scholar 

  • Peng S, Fuchs A, Wirtz RA (2004) Polymeric phase change composites for thermal energy storage. J Appl Polym Sci 93:1240–1251

    Article  CAS  Google Scholar 

  • Petrovic GM, Stojanovic GS, Radulovic NS (2010) Encapsulation of cinnamon oil in β-cyclodextrin. J Med Plant Res 4:1382–1390

    CAS  Google Scholar 

  • Rong Y, Chen HZ, Wei DC, Sun JZ, Wang M (2004) Microcapsules with compact membrane structure from gelatin and styrene–maleic anhydride copolymer by complex coacervation. Colloid Surf A 242:17–20

    Article  CAS  Google Scholar 

  • Sadeghi-Jorabchi H, Wilson RH, Belton PS, Edwards-Webb JD, Coxon DT (1991) Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy. Spectrochim Acta A 47:1449–1458

    Article  Google Scholar 

  • Samyn P, Deconinck M, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H (2010) Modification of paper and paperboard surfaces with a nanostructured polymer coating. Prog Org Coat 69:442–454

    Article  CAS  Google Scholar 

  • Samyn P, Deconinck M, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H (2012a) Synthesis and characterization of imidized poly(styrene–maleic anhydride) organic nanoparticles in stable aqueous dispersion. Polym Adv Technol 23:311–325

    Article  CAS  Google Scholar 

  • Samyn P, Schoukens G, Vonck L, Stanssens D, Van den Abbeele H (2012b) Quality of Brazilian vegetable oils evaluated by (modulated) differential scanning calorimetry. J Therm Anal Calorim. doi:10.1007/s10973-011-2132-2

  • Samyn P, Van Nieuwkerke D, Schoukens G, Vonck L, Stanssens D, Van den Abbeele H (2012c) Quality and statistical quantification of Brazilian vegetable oils using FTIR and Raman spectroscopy. Appl Spectrosc 66:552–565

    Article  CAS  Google Scholar 

  • Sansukcharearnpon A, Wanichwecharungruang S, Leepipatpaiboon N, Kerdcharoen T, Arayachukeat S (2010) High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. Int J Pharm 31:267–273

    Article  Google Scholar 

  • Sari A, Alkan C, Karaipekli A, Onal A (2008) Preparation, characterization and thermal properties of styrene–maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energy Convers Manag 49:373–380

    Article  CAS  Google Scholar 

  • Shulkin A, Stöver HDH (2002) Microcapsules from styrene–maleic anhydride copolymers: study of morphology and release behaviour. J Membr Sci 209:433–444

    Article  CAS  Google Scholar 

  • Su JF, Wang LX, Ren L (2006) Fabrication and thermal properties of micro-phase change materials: used melamine formaldehyde resin as shell material. J Appl Polym Sci 101:1522–1528

    Article  CAS  Google Scholar 

  • Su JF, Wang LX, Ren L (2007) Synthesis of polyurethane micro-PCMs containing n-octadecane by interfacial polycondensation: influence of styrene–maleic anhydride as surfactant. Colloid Surf A 299:268–275

    Article  CAS  Google Scholar 

  • Szczepanowicz K, Dronka-Gora D, Para G, Warszynski P (2010) Encapsulation of liquid cores by layer-by-layer adsorption of polyelectrolytes. J Microencapsul 27:198–204

    Article  CAS  Google Scholar 

  • Tao M, Hu Z, Zhang Z (2008) Morphology of the poly(styrene-alt-maleic anhydride) micelles obtained by radiation-induced emulsion polymerization using anionic/nonionic mixed surfactants templates. Mater Lett 62:597–599

    Article  CAS  Google Scholar 

  • Tian Y, Zhou W, Yu L, Meng F, Yu K, Ding K, Li M, Wang Z (2007) Self-assembly of monodisperse SiO2–zinc borate core–shell nanospheres for lubrication. Mater Lett 61:506–510

    Article  CAS  Google Scholar 

  • Torini L, Argillier JF, Zydowicz N (2005) Interfacial polycondensation encapsulation in mini-emulsion. Macromolecules 38:3225–3236

    Article  CAS  Google Scholar 

  • Turchiuli C, Fuchs M, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard M (2005) Oil encapsulation by spray drying and fluidised bed agglomeration. Innov Food Sci Emerg Technol 6:29–35

    Article  CAS  Google Scholar 

  • Voncina B, Kreft O, Kokol V, Chen WT (2009) Encapsulation of rosemary oil in ethylcellulose microcapsules. Analysis 1:13–19

    Google Scholar 

  • Xiao M, Feng B, Gong K (2002) Preparation and performance of shape-stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manag 43:103–108

    Article  CAS  Google Scholar 

  • Yow HN, Wu X, Routh AF, Guy RH (2005) Dye diffusion from microcapsules with different shell thickness into mammalian skin. Eur J Pharm Biopharm 72:62–68

    Article  Google Scholar 

  • Zhang XX, Fan YF, Tao XM, Yick KL (2005) Crystallization and prevention of supercooling of micro-encapsulated n-alkanes. J Colloid Interface Sci 281:299–306

    Article  CAS  Google Scholar 

  • Zhong Y, Feng J, Chen S (2005) Dyeing of polyester using micro-encapsulated disperse dyes in the absence of auxiliaries. Color Technol 121:76–80

    Article  Google Scholar 

  • Zuidam NJ, Nedovic V (2010) Encapsulation technologies for active food ingredients and food processing. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

H. Van den Abbeele and G. Schoukens thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (I.W.T.) for a funding program “SNAP” (contract grant IWT-080213). P. Samyn acknowledges the Robert Bosch Foundation for support in the Junior Professorship Program “Sustainable use of Natural Resources.” We thank Dr. Ralf Thomann for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Samyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samyn, P., Schoukens, G., Stanssens, D. et al. Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles. J Nanopart Res 14, 1075 (2012). https://doi.org/10.1007/s11051-012-1075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1075-2

Keywords

Navigation