Advertisement

Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles

  • Pieter Samyn
  • Gustaaf Schoukens
  • Dirk Stanssens
  • Leo Vonck
  • Henk Van den Abbeele
Research Paper

Abstract

Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene–maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core–shell nanoparticles with 20–60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.

Keywords

Nanoparticles Core–shell Encapsulation Copolymer Vegetable oil 

Notes

Acknowledgments

H. Van den Abbeele and G. Schoukens thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (I.W.T.) for a funding program “SNAP” (contract grant IWT-080213). P. Samyn acknowledges the Robert Bosch Foundation for support in the Junior Professorship Program “Sustainable use of Natural Resources.” We thank Dr. Ralf Thomann for TEM analysis.

References

  1. Abang S, Chan ES, Poncelet D (2012) Effects of process variables on the encapsulation of oil in alginate capsules using an inverse gelation technique. J Microencapsul. doi: 10.3109/02652048.2012.655331 Google Scholar
  2. Adamiec J, Marciniak E (2004) Microencapsulation of oil/matrix/water system during spray drying process. In: Drying 2004, proceedings of the 14th international drying symposium, Sao Paulo, Brazil, pp 2043–2050Google Scholar
  3. Alkan C, Sari A, Uzun O (2006) Poly(ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage. J Am Inst Chem Eng 52:3310–3314CrossRefGoogle Scholar
  4. Bae KH, Lee Y, Park TG (2007) Oil-encapsulating PEO–PPO–PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8:650–656CrossRefGoogle Scholar
  5. Baeten V, Meurens M (1996) Detection of virgin olive oil adulteration by Fourier Transform Raman Spectroscopy. J Agric Food Chem 44:2225–2230Google Scholar
  6. Braun D, Sauerwein R, Hellmann GP (2001) Polymeric surfactants from styrene-co-maleic anhydride copolymers. Macromol Symp 163:59–66CrossRefGoogle Scholar
  7. Calvo P, Hernandez T, Lozano M, Gonzalez-Gomez D (2010) Microencapsulation of extra-virgin olive oil by spray-drying: influence of wall material and olive quality. Eur J Lipid Sci Technol 112:852–858CrossRefGoogle Scholar
  8. Domian E, Wqsak I (2008) Encapsulation of rapeseed oil based on spray drying method. Pol J Food Nutr Sci 58:477–483Google Scholar
  9. Esumi K (2003) Dendrimers for nanoparticle synthesis and dispersion stabilization. Top Curr Chem 227:31–52CrossRefGoogle Scholar
  10. Fairhurst D, Loxley A (2008) Micro- and nano-encapsulation of water- and oil-soluble actives for cosmetic and pharmaceutical applications. In: Wiechers JW (ed) Science and applications of skin delivery systems. Allured Publishing, Carol Stream, pp 313–336Google Scholar
  11. Frere W, Danchier L, Gramain P (1998) Preparation of microcapsules by interfacial polymerization. Eur Polym J 34:193–199CrossRefGoogle Scholar
  12. Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, Dumoulin E (2006) Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng 75:35–37CrossRefGoogle Scholar
  13. Glenn GM, Klamczynski AP, Woods DF, Chiou BS, Orts WJ, Imam SH (2010) Encapsulation of plant oils in porous starch microspheres. J Agric Food Chem 58:4180–4184CrossRefGoogle Scholar
  14. Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202CrossRefGoogle Scholar
  15. Hong Y, Xin-shi G (2000) Preparation of polyethylene–paraffin compound as a form-stable solid–liquid phase change material. Sol Energy Mater Cells 64:37–44CrossRefGoogle Scholar
  16. Horie M, Yanagisawa H, Sugawara M (2007) Fluorometric immunoassay based on pH-sensitive dye-encapsulating liposomes and gramicidin channels. Anal Biochem 369:192–201CrossRefGoogle Scholar
  17. Hsieh WC, Chang CP, Gao YL (2006) Controlled release properties of chitosan encapsulated volatile citronella oil microcapsules by thermal treatments. Colloid Surf B 53:209–214CrossRefGoogle Scholar
  18. Inaba H, Tu P (1997) Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid–liquid phase change material. Heat Mass Transf 32:307–312CrossRefGoogle Scholar
  19. Jafari SM, Assadpoor E, He Y, Bhandari B (2008a) Encapsulation efficiency of food flavours and oils during spray drying. Dry Technol 26:816–835CrossRefGoogle Scholar
  20. Jafari SM, Assadpoor E, Bhandani Y, He Y (2008b) Nano-particle encapsulation of fish oil by spray drying. Food Res Int 41:172–183CrossRefGoogle Scholar
  21. Jovanovic AV, Underhill RS, Bucholz TL, Duran RS (2005) Oil core and silica shell nanocapsules: towards controlling the size and the ability to sequester hydrophobic compounds. Chem Mater 17:3375–3383CrossRefGoogle Scholar
  22. Kim EY, Kim HD (2005) Preparation and properties of micro-encapsulated octadecane with waterborne polyurethane. J Appl Polym Sci 96:1596–1604CrossRefGoogle Scholar
  23. Kim BS, Tation TA (2007) Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants. Langmuir 23:2198–2202CrossRefGoogle Scholar
  24. Klaypradit W, Huang YW (2008) Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT Food Sci Technol 41:1133–1139CrossRefGoogle Scholar
  25. Landfester K (2009) Miniemulsion polymerization and structure of polymer and hybrid nanoparticles. Angew Chem 48:4488–4507CrossRefGoogle Scholar
  26. Lee CY, Yu H, Kim ES (2007) Microreactions using nanoliter droplets with oil encapsulation. In: IEEE 20th international conference on micro electro mechanical systems, pp 81–84Google Scholar
  27. Leelajariyakul S, Noguchi H, Kiatkamjornwong S (2008) Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Prog Org Coat 62:145–161CrossRefGoogle Scholar
  28. Liu X, Liu H, Wang S, Zhang L, Cheng H (2006a) Preparation and thermal properties of form stable paraffin phase change materials encapsulation. Energy Convers Manag 47:2515–2522CrossRefGoogle Scholar
  29. Liu HY, Cao K, Huang Y, Yao Z, Li BG, Hu GH (2006b) Kinetics and simulation of the imidization of poly(styrene-co-maleic anhydride) with amines. J Appl Polym Sci 100:2744–2749CrossRefGoogle Scholar
  30. Luo Y, Gu H (2006) A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization. Macromol Rapid Commun 27:21–25CrossRefGoogle Scholar
  31. Luo Y, Gu H (2007) Nanoencapsulation via interfacially confined reversible addition fragmentation transfer (RAFT) miniemulsion polymerization. Polymer 48:3262–3272CrossRefGoogle Scholar
  32. Luo Y, Zhou X (2004) Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. J Polym Sci A 42:2145–2154CrossRefGoogle Scholar
  33. Malardier-Jugroot C, Van de Ven TGM, Whitehead MA (2005) Linear conformation of poly(styrene-alt-maleic anhydride) capable of self-assembly: a result of chain stiffening by internal hydrogen bonds. J Phys Chem B 109:7022–7032CrossRefGoogle Scholar
  34. Martin A, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation process with supercritical fluids: applications with essential oils. Open Chem Eng J 4:31–41CrossRefGoogle Scholar
  35. Martinez A, Gonzalez C, Porras M, Gutierez JM (2005) Nano-sized latex particles obtained by emulsion polymerization using an amphiphilic block copolymer as surfactant. Colloid Surf A 270–271:67–71CrossRefGoogle Scholar
  36. Mazur M (2008) Polypyrrole containers grown on oil microdroplets: encapsulation of fluorescent dyes. Langmuir 24:10414–10420CrossRefGoogle Scholar
  37. Mizuno K, Taguchi Y (2005) The effect of the surfactant absorption layer on the growth rate of the polyurethane capsule shell. J Chem Eng Jpn 38:45–48CrossRefGoogle Scholar
  38. Mogridge DJ, Phipps JS, Rogan KR, Skuse DR (2002) Pigment dispersion technology for the paper industry. In: Skuse DRS (ed) Specialty chemicals in mineral processing. Royal Society of Chemistry, Cambridge, pp 55–67CrossRefGoogle Scholar
  39. Moore E, Pickelman D (1986) Synthesis of styrene/maleimide copolymers and physical properties thereof. Ind Eng Chem Prod Res Dev 25:603–609CrossRefGoogle Scholar
  40. Mu B, Shen R, Liu P (2009) Crosslinked polymeric nanocapsules from polymer brushes grafted silica nanoparticles via surface-initiated atom transfer radical polymerization. Colloid Surf B 74:511–515CrossRefGoogle Scholar
  41. Muik B, Lendl B, Molina-Diaz A, Ayora MJ (2005) Canada, direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem Phys Lipid 134:173–182CrossRefGoogle Scholar
  42. Nguyen D, Zondanos HS, Farrugia JM, Serelis AK, Such CH, Hawkett BS (2008) Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers. Langmuir 24:2140–2150CrossRefGoogle Scholar
  43. Peng S, Fuchs A, Wirtz RA (2004) Polymeric phase change composites for thermal energy storage. J Appl Polym Sci 93:1240–1251CrossRefGoogle Scholar
  44. Petrovic GM, Stojanovic GS, Radulovic NS (2010) Encapsulation of cinnamon oil in β-cyclodextrin. J Med Plant Res 4:1382–1390Google Scholar
  45. Rong Y, Chen HZ, Wei DC, Sun JZ, Wang M (2004) Microcapsules with compact membrane structure from gelatin and styrene–maleic anhydride copolymer by complex coacervation. Colloid Surf A 242:17–20CrossRefGoogle Scholar
  46. Sadeghi-Jorabchi H, Wilson RH, Belton PS, Edwards-Webb JD, Coxon DT (1991) Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy. Spectrochim Acta A 47:1449–1458CrossRefGoogle Scholar
  47. Samyn P, Deconinck M, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H (2010) Modification of paper and paperboard surfaces with a nanostructured polymer coating. Prog Org Coat 69:442–454CrossRefGoogle Scholar
  48. Samyn P, Deconinck M, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H (2012a) Synthesis and characterization of imidized poly(styrene–maleic anhydride) organic nanoparticles in stable aqueous dispersion. Polym Adv Technol 23:311–325CrossRefGoogle Scholar
  49. Samyn P, Schoukens G, Vonck L, Stanssens D, Van den Abbeele H (2012b) Quality of Brazilian vegetable oils evaluated by (modulated) differential scanning calorimetry. J Therm Anal Calorim. doi: 10.1007/s10973-011-2132-2
  50. Samyn P, Van Nieuwkerke D, Schoukens G, Vonck L, Stanssens D, Van den Abbeele H (2012c) Quality and statistical quantification of Brazilian vegetable oils using FTIR and Raman spectroscopy. Appl Spectrosc 66:552–565CrossRefGoogle Scholar
  51. Sansukcharearnpon A, Wanichwecharungruang S, Leepipatpaiboon N, Kerdcharoen T, Arayachukeat S (2010) High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. Int J Pharm 31:267–273CrossRefGoogle Scholar
  52. Sari A, Alkan C, Karaipekli A, Onal A (2008) Preparation, characterization and thermal properties of styrene–maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energy Convers Manag 49:373–380CrossRefGoogle Scholar
  53. Shulkin A, Stöver HDH (2002) Microcapsules from styrene–maleic anhydride copolymers: study of morphology and release behaviour. J Membr Sci 209:433–444CrossRefGoogle Scholar
  54. Su JF, Wang LX, Ren L (2006) Fabrication and thermal properties of micro-phase change materials: used melamine formaldehyde resin as shell material. J Appl Polym Sci 101:1522–1528CrossRefGoogle Scholar
  55. Su JF, Wang LX, Ren L (2007) Synthesis of polyurethane micro-PCMs containing n-octadecane by interfacial polycondensation: influence of styrene–maleic anhydride as surfactant. Colloid Surf A 299:268–275CrossRefGoogle Scholar
  56. Szczepanowicz K, Dronka-Gora D, Para G, Warszynski P (2010) Encapsulation of liquid cores by layer-by-layer adsorption of polyelectrolytes. J Microencapsul 27:198–204CrossRefGoogle Scholar
  57. Tao M, Hu Z, Zhang Z (2008) Morphology of the poly(styrene-alt-maleic anhydride) micelles obtained by radiation-induced emulsion polymerization using anionic/nonionic mixed surfactants templates. Mater Lett 62:597–599CrossRefGoogle Scholar
  58. Tian Y, Zhou W, Yu L, Meng F, Yu K, Ding K, Li M, Wang Z (2007) Self-assembly of monodisperse SiO2–zinc borate core–shell nanospheres for lubrication. Mater Lett 61:506–510CrossRefGoogle Scholar
  59. Torini L, Argillier JF, Zydowicz N (2005) Interfacial polycondensation encapsulation in mini-emulsion. Macromolecules 38:3225–3236CrossRefGoogle Scholar
  60. Turchiuli C, Fuchs M, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard M (2005) Oil encapsulation by spray drying and fluidised bed agglomeration. Innov Food Sci Emerg Technol 6:29–35CrossRefGoogle Scholar
  61. Voncina B, Kreft O, Kokol V, Chen WT (2009) Encapsulation of rosemary oil in ethylcellulose microcapsules. Analysis 1:13–19Google Scholar
  62. Xiao M, Feng B, Gong K (2002) Preparation and performance of shape-stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manag 43:103–108CrossRefGoogle Scholar
  63. Yow HN, Wu X, Routh AF, Guy RH (2005) Dye diffusion from microcapsules with different shell thickness into mammalian skin. Eur J Pharm Biopharm 72:62–68CrossRefGoogle Scholar
  64. Zhang XX, Fan YF, Tao XM, Yick KL (2005) Crystallization and prevention of supercooling of micro-encapsulated n-alkanes. J Colloid Interface Sci 281:299–306CrossRefGoogle Scholar
  65. Zhong Y, Feng J, Chen S (2005) Dyeing of polyester using micro-encapsulated disperse dyes in the absence of auxiliaries. Color Technol 121:76–80CrossRefGoogle Scholar
  66. Zuidam NJ, Nedovic V (2010) Encapsulation technologies for active food ingredients and food processing. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Pieter Samyn
    • 1
  • Gustaaf Schoukens
    • 2
  • Dirk Stanssens
    • 3
  • Leo Vonck
    • 3
  • Henk Van den Abbeele
    • 3
  1. 1.Institute for Forest UtilizationAlbert-Lüdwigs-University FreiburgFreiburgGermany
  2. 2.Department of TextilesGhent UniversityZwijnaardeBelgium
  3. 3.Topchim N.V.WommelgemBelgium

Personalised recommendations