Advertisement

On the structure and normal modes of hydrogenated Ti-fullerene compounds

  • Alfredo Tlahuice-Flores
  • Sergio Mejía-Rosales
  • Donald H. Galván
Research Paper
Part of the following topical collections:
  1. Nanomaterials in energy, health and environment

Abstract

When titanium covers a C60 core, the metal atoms may suppress the fullerene's capacity of storing hydrogen, depending on the number of Ti atoms covering the C60 framework, the Ti–C binding energy, and diffusion barriers. In this article, we study the structural and vibrational properties of the C60TiH n (n = 2, 4, 6, and 8) and C60Ti6H48 compounds. The IR spectra of C60TiH n compounds have a maximum attributable to the Ti–H stretching mode, which shifts to lower values in the structures with n = 4, 8, while their Raman spectra show two peaks corresponding to the stretching modes of H2 molecules at apical and azimuthal positions. On the other hand, the IR spectrum of C60Ti6H48 shows an intense peak due to the Ti–H in-phase stretching mode, while its Raman spectrum has a maximum attributed to the pentagonal pinch of the C60 core. Finally, we have found that the presence of one apical H2 molecule enhances the pentagonal pinch mode, becoming the maximum in the Raman spectrum.

Graphical Abstract

Keywords

Raman Hydrogen storage Coated fullerene Transition metals Infrared Atomic clusters 

Notes

Acknowledgments

The authors acknowledge al Departamento de Supercómputo DGSCA-UNAM for the support provided.

References

  1. Bach AL, Catalano VJ, Lee JW, Olmstead MM, Parkin SR (1991) (.eta.2-C70)Ir(CO)Cl(PPh3)2: the synthesis and structure of an iridium organometallic derivate of a higher fullerene. J Am Chem Soc 113:8953–8955. doi: 10.1021/ja00023a057 CrossRefGoogle Scholar
  2. Bauschlicher CW Jr, So CR (2002) High coverages of hydrogen on (10,0), (9,0) and (5,5) carbon nanotubes. Nanoletters 2:337–341. doi: 10.1021/nl020283o CrossRefGoogle Scholar
  3. Durgun E, Ciraci S, Yildirim T (2008) Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage. Phys Rev B 77:085405-1–085405-9. doi: 10.1103/PhysRevB.77.085405 CrossRefGoogle Scholar
  4. Fajan PJ, Calabrese JC, Malone B (1991) A multiply-substituted buckminsterfullerene (C60) with an octahedral array of platinum atoms. J Am Chem Soc 113:9408–9409. doi: 10.1021/ja00024a079 CrossRefGoogle Scholar
  5. Fajan PJ, Calabrese JC, Malone B (1992) Metal complexes of buckminsterfullerene (C60). Acc Chem Res 25:134–142. doi: 10.1021/ar00015a006 CrossRefGoogle Scholar
  6. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2003) Gaussian 03, revision B.03. 2003. Gaussian Inc., WallingfordGoogle Scholar
  7. Halls MD, Bernhard HS (1999) Comparison study of the prediction of Raman intensities using electronic structure methods. J Chem Phys 111:8819–8824. http://dx.doi.org/10.1063/1.480228
  8. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. doi: 10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  9. Iñiguez J, Zhou W, Yildirim T (2007) Vibrational properties of TiHn complexes adsorbed on carbon nanostructures. Chem Phys Lett 444:140–144. http://dx.doi.org/10.1016/j.cplett.2007.06.133 Google Scholar
  10. Kiran B, Kandalam AK, Jena P (2006) Hydrogen storage and the 18-electron rule. J Chem Phys. 124:224703–224706. http://dx.doi.org/10.1063/1.2202320 Google Scholar
  11. Koh W, Choi JI, Lee SG, Lee WR, Jang SS (2011) First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system. Carbon 49:286–293. http://dx.doi.org/10.1016/j.carbon.2010.09.022 Google Scholar
  12. Krasnov PO, Ding F, Singh AK, Yakobson BI (2007) Clustering of Sc on SWNT and reduction of hydrogen uptake: ab initio all-electron calculations. J Phys Chem C 111:17977–17980. doi: 10.1021/jp077264t CrossRefGoogle Scholar
  13. Lee H, Li J, Zhou G, Duan W, Kim G, Ihm J (2008) Room-temperature dissociative hydrogen chemisorption on boron-doped fullerenes. Phys Rev B 77:235101-1–235101-5. doi: 10.1103/PhysRevB.77.235101 Google Scholar
  14. Mathur P, Mavunkal IJ, Umbarkar SB (1998) Synthetic methodologies and structures of metal-[C60] fullerene complexes. J Cluster Sci 9:393–415. doi: 10.1023/A:1021934431858 CrossRefGoogle Scholar
  15. Shin WH, Yang SH, Goddard WA, Kang JA (2006) Ni-dispersed fullerenes: hydrogen storage and desorption properties. Appl Phys Lett 88:053111-1–053111-3. http://dx.doi.org/10.1063/1.2168775 Google Scholar
  16. Sun Q, Wang Q, Jena P, Kawazoe Y (2005) Clustering of Ti on a C60 surface and its effect on hydrogen storage. J Am Chem Soc 127:14582–14583. doi: 10.1021/ja0550125 CrossRefGoogle Scholar
  17. Valencia H, Gil A, Frapper G (2010) Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis. J Phys Chem C 114:14141–14153. doi: 10.1021/jp103445v CrossRefGoogle Scholar
  18. Yang XB, Zhang RQ, Ni J (2009) Stable calcium adsorbates on carbon nanostructures: applications for high-capacity hydrogen storage. Phys Rev B 79:075431-1–075431-4. doi: 10.1103/PhysRevB.79.075431 Google Scholar
  19. Yildirim T, Iñiguez J, Ciraci S (2005) Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60. Phys Rev B 72:153403–153406. doi: 10.1103/PhysRevB.72.153403 CrossRefGoogle Scholar
  20. Yoon M, Yang S, Hicke Ch, Wang E, Geohegan D, Zhang Z (2008) Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys Rev Lett 100:206806-1–206806-4. doi: 10.1103/PhysRevLett.100.206806 Google Scholar
  21. Zhang Y, Franklin NW, Chen RJ, Dai HJ (2000) Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction. Chem Phys Lett 331:35–41. http://dx.doi.org/10.1016/S0009-2614(00)01162-3 Google Scholar
  22. Zhao YF, Kim YH, Dillon AC, Heben MJ, Zhang SB (2005) Hydrogen storage in novel organometallic buckyballs. Phys Rev Lett 94:155504-1–155504-4. doi: 10.1103/PhysRevLett.94.155504 Google Scholar
  23. Zope RR, Baruah T, Lau KC, Liu AY, Pederson MR, Dunlap BI (2009) Boron fullerenes: from B80 to hole doped boron sheets. Phys Rev B 79:161403–161404. doi: 10.1103/PhysRevB.79.161403 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alfredo Tlahuice-Flores
    • 1
  • Sergio Mejía-Rosales
    • 2
  • Donald H. Galván
    • 3
  1. 1.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.CICFIM-Facultad de Ciencias Físico Matemáticas, and Centro de Innovación, Investigación y Desarrollo en Ingeniería y TecnologíaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  3. 3.Centro de Nanociencias y Nanotecnologia-Universidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations