Journal of Nanoparticle Research

, 14:1025 | Cite as

Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence

  • Ping Yang
  • Kazunori Kawasaki
  • Masanori Ando
  • Norio Murase
Research Paper


A sol–gel method has been developed to fabricate Au/SiO2/quantum dot (QD) core–shell–shell nanostructures with plasmonic-enhanced photoluminescence (PL). Au nanoparticle (NP) was homogeneously coated with a SiO2 shell with adjusted thickness through a Stöber synthesis. When the toluene solution of hydrophobic CdSe/ZnS QDs was mixed with partially hydrolyzed 3-aminopropyltrimethoxysilane (APS) sol, the ligands on the QDs were replaced by a thin functional SiO2 layer because the amino group in partially hydrolyzed APS has strong binding interaction with the QDs. Partially hydrolyzed APS plays an important role as a thin functional layer for the transfers of QDs to water phase and the subsequent connection to aqueous SiO2-coated Au NPs. Although Au NPs were demonstrated as efficient PL quenchers when the SiO2 shell on the Au NPs is thin (less than 5 nm), we found that precise control of the spacing between the Au NP core and the QD shell resulted in QDs with an enhancement of 30 % of PL efficiency. The Au/SiO2/QD core/shell/shell nanostructures also reveal strong surface plasmon scattering, which makes the Au/SiO/QD core–shell–shell nanostructures an excellent dual-modality imaging probe. This technology can serve as a general route for encapsulating a variety of discrete nanomaterials because monodispersed nanostructures often have a similar surface chemistry.


Quantum dot Au Nanoparticle Plasmon Photoluminescence Enhancement Sol–gel method 

Supplementary material

11051_2012_1025_MOESM1_ESM.doc (206 kb)
Supplementary material 1 (DOC 207 kb)


  1. Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699. doi: 10.1080/09500349808230614 CrossRefGoogle Scholar
  2. Bruchez MP, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. doi: 10.1126/science.281.5385.2013 CrossRefGoogle Scholar
  3. Chan YH, Chen J, Wark SE, Skiles SL, Son DH, Batteas JD (2009) Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots. ACS Nano 3:1735–1744. doi: 10.1021/nn900317n CrossRefGoogle Scholar
  4. Gerion D, Pinaud F, Shara Williams SC, Parak WJ, Zanchet D, Weiss S, Paul Alivisatos A (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871. doi: 10.1021/jp0105488 CrossRefGoogle Scholar
  5. Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139–1152. doi: 10.1063/1.442161 CrossRefGoogle Scholar
  6. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145–195. doi: 10.1103/RevModPhys.74.145 CrossRefGoogle Scholar
  7. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch–Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81:6285–6294. doi: 10.1021/ac900308v CrossRefGoogle Scholar
  8. Gryczynski I, Malicka J, Jiang W, Fischer H, Chan WCW, Gryczynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots. J Phys Chem B 109:1088–1093. doi: 10.1021/jp046173i CrossRefGoogle Scholar
  9. Hillman EMC, Moore A (2007) All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nat Photonics 1:526–530. doi: 10.1038/nphoton.2007.146 CrossRefGoogle Scholar
  10. Jones M, Nedeljkovic J, Ellingson RJ, Nozik AJ, Rumbles GJ (2003) Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. Phys Chem B 107:11346–11352. doi: 10.1021/jp035598m CrossRefGoogle Scholar
  11. Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2:1449–1452. doi: 10.1021/nl025819k CrossRefGoogle Scholar
  12. Lackowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24. doi: 10.1006/abio.2001.5377 CrossRefGoogle Scholar
  13. Lackowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169. doi: 10.1016/j.ab.2003.09.039 CrossRefGoogle Scholar
  14. Liu N, Prall BS, Klimov VI (2006) Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. J Am Chem Soc 128:15362–15363. doi: 10.1021/ja0660296 CrossRefGoogle Scholar
  15. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core–shell particles. Langmuir 12:4329–4335CrossRefGoogle Scholar
  16. Murase N (2010) Quantum dot–core silica glass–shell nanomaterials: synthesis, characterization, and potential biomedical applications, vol 6. In Kumar C (ed) Nanomaterials for the life sciences. Wiley, New York, p. 393. doi: 10.1002/9783527610419.ntls0201
  17. Murase N, Li C (2008) Consistent determination of photoluminescence quantum efficiency for phosphors in the form of solution, plate, thin film, and powder. J Lumin 128:1896–1903. doi: 10.1016/j.jlumin.2008.05.016 CrossRefGoogle Scholar
  18. Nann T, Mulvaney P (2004) Single quantum dots in spherical silica particles. Angew Chem Int Ed 43:5393–5396. doi: 10.1002/anie.200460752 CrossRefGoogle Scholar
  19. Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Atmospheric carbon dioxide through the eocene–oligocene climate transition. Nature 460:1110–1114. doi: 10.1038/nature08447 CrossRefGoogle Scholar
  20. Okamoto K, Vyawahare S, Scherer A (2006) Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals. J Opt Soc Am B 23:1674–1678. doi: 0740-3224/06/081674-5/ CrossRefGoogle Scholar
  21. Ozel T, Nizamoglu S, Sefunc MA, Samarskaya O, Ozel IO, Mutlugun E, Lesnyak V, Gaponik N, Eychmuller A, Gaponenko SV, Demir HV (2011) Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano 5:1328–1334. doi: 10.1021/nn1030324 CrossRefGoogle Scholar
  22. Pompa PP, Martiradonna L, Torre AD, Sala FD, Manna L, Vittorio MD, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1:126–130. doi: 10.1038/nnano.2006.93 CrossRefGoogle Scholar
  23. Rogach AL, Nagesha D, Ostrander JW, Giersig M, Kotov NA (2000) “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chem Mater 12:2676–2685. doi: 10.1021/cm000244i CrossRefGoogle Scholar
  24. Salgueiriño-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzán LM, Farle M (2006) Composite silica spheres with magnetic and luminescent functionalities. Adv Funct Mater 16:509–514. doi: 10.1002/adfm.200500565 CrossRefGoogle Scholar
  25. Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620–1625. doi: 10.1002/adma.200401960 CrossRefGoogle Scholar
  26. Song JH, Atay T, Shi S, Urabe H, Nurmikko AV (2005) Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett 5:1557–1561. doi: 10.1021/nl050813r CrossRefGoogle Scholar
  27. Wang EH, Smolyaninov II, Davis CC (2010) Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces. Nano Lett 10:813–820. doi: 10.1021/nl9031692 CrossRefGoogle Scholar
  28. Yang P, Murase N (2010) Size-tunable highly luminescent SiO2 particles impregnated with number-adjusted CdTe nanocrystals. ChemPhysChem 11:815–821. doi: 10.1002/cphc.200900850 CrossRefGoogle Scholar
  29. Yang P, Murase N, Suzuki M, Hosokawa C, Kawasaki K, Kato T, Taguchi T (2010) Bright, non-blinking, and less-cytotoxic SiO2 beads with multiple CdSe/ZnS nanocrystals. Chem Commun 46:4595–4597. doi: 10.1039/C002243H CrossRefGoogle Scholar
  30. Yang P, Ando M, Murase N (2011) Various Au nanoparticle organizations fabricated through SiO2 monomer induced self-assembly. Langmuir 27:895–901. doi: 10.1021/la103143j CrossRefGoogle Scholar
  31. Yi DK, Lee SS, Ying JY (2006) Synthesis and applications of magnetic nanocomposite catalysts. Chem Mater 18:2459–2461. doi: 10.1021/cm052885p CrossRefGoogle Scholar
  32. Yuan CT, Yu P, Ko HC, Huang J, Tang J (2009) Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots. ACS Nano 3:3051–3056. doi: 10.1021/nn900760u CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ping Yang
    • 1
  • Kazunori Kawasaki
    • 1
  • Masanori Ando
    • 1
  • Norio Murase
    • 1
    • 2
  1. 1.Health Research InstituteNational Institute of Advanced Industrial Science and TechnologyIkeda-cityJapan
  2. 2.Health Research InstituteNational Institute of Advanced Industrial Science and TechnologyTakamatsuJapan

Personalised recommendations