Skip to main content
Log in

Phase transfer of agglomerated nanoparticles: deagglomeration by adsorbing grafted molecules and colloidal stability in polymer solutions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A study is presented, where agglomerated magnetite nanoparticles with a crystallite size of 15 nm are transferred from water to an immiscible organic phase and tend to deagglomerate under certain conditions using different types of chemically adsorbing fatty acid. It is shown that the longer fatty acids lead to more stable dispersions and for the longest fatty acids, the functionality of the molecules defines stability with best results for ricinoleic acid. The disjoining force as a function of the brush layer thickness and adsorption density is calculated with a physical model applying the well-established Alexander de Gennes theory. We further investigate the colloidal stability of the transferred and stabilized magnetite nanocrystals in polymer solutions of destabilizing PMMA and stabilizing PVB. A DLVO-like theory presents the governing attractive and repulsive interactions for the case of destabilizing non-adsorbing polymers. The theory can be used to explain the influencing parameters in a mixture of sterically stabilized nanoparticles in an organic solvent based solution of polymer coils. Finally, by spray drying, we produce polymer–nanoparticle composite microparticles. Based on BET, laser diffraction and backscatter electron SEM measurements, we draw conclusions on the nanoparticle distribution within the composite in correlation with the stability investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AdG:

Alexander de Gennes theory

CA:

Caprylic acid

DCM:

Dichloromethane

DLS:

Dynamic light scattering

LA:

Linoleic acid

MA:

Myristic acid

OA:

Oleic acid

PMMA:

Poly(methyl methacrylate)

PVB:

Poly(vinyl butyral)

RA:

Ricinoleic acid

References

  • Alexander S (1977) Adsorption of chain molecules with a polar head a scaling description. J de Phys 38(8):983–987. doi:10.1051/jphys:01977003808098300

    Article  CAS  Google Scholar 

  • Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22(7):1255–1256

    CAS  Google Scholar 

  • Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci 33(126):183–192

    Article  CAS  Google Scholar 

  • Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110. doi:10.1126/science.1130557

    Article  CAS  Google Scholar 

  • Banert T, Peuker UA (2006) Preparation of highly filled super-paramagnetic PMMA-magnetite nano composites using the solution method. J Mater Sci 41(10):3051–3056

    Article  CAS  Google Scholar 

  • Barrera C, Herrera AP, Rinaldi C (2009) Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol). J Colloid Interface Sci 329(1):107–113

    Article  CAS  Google Scholar 

  • Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5(14):1600–1630

    Article  CAS  Google Scholar 

  • Chanana M, Jahn S, Georgieva R, Lutz J-Fo, Bäumler H, Wang D (2009) Fabrication of colloidal stable, thermosensitive, and biocompatible magnetite nanoparticles and study of their reversible agglomeration in aqueous milieu. Chem Mater 21(9):1906–1914. doi:10.1021/cm900126r

    Article  CAS  Google Scholar 

  • Cheng W, Wang E (2004) Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: a wholly electrostatic interaction. J Phys Chem B 108(1):24–26

    Article  CAS  Google Scholar 

  • Clayfield EJ, Lumb EC (1966) Detachment of adhered colloidal particles by non-aqueous surfactant solutions. Discuss Faraday Soc 42:285–293

    Article  Google Scholar 

  • Cowell C, Li-In-On R, Vincent B (1978) Reversible flocculation of sterically-stabilised dispersions. J Chem Soc Faraday Trans 74:337–347

    Article  CAS  Google Scholar 

  • Currie EPK, Norde W, Stuart MAC (2003) Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Adv Colloid Interface Sci 100:PII S0001-8686(0002)00061-00061

  • David I, Gittins FC (2001) Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew Chem Int Ed 40(16):3001–3004

    Article  Google Scholar 

  • De Gennes PG (1981) Polymer solutions near an interface. Adsorption and depletion layers. Macromolecules 14(6):1637–1644. doi:10.1021/ma50007a007

    Article  Google Scholar 

  • De Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27(3–4):189–209

    Article  Google Scholar 

  • Dolan AK, Edwards SF (1974) Theory of stabilization of colloids by adsorbed polymer. Proc R Soc London Ser A-Math Phys Eng Sci 337(1611):509–516

    Article  CAS  Google Scholar 

  • Dusastre V, Tomlin S, Bellantone M, Lobo C (2002) Our changing nature. Nat Mater 1(1):1

    Article  CAS  Google Scholar 

  • Faure B, Salazar-Alvarez G, Bergström L (2011) Hamaker constants of iron oxide nanoparticles. Langmuir 27(14):8659–8664. doi:10.1021/la201387d

    Article  CAS  Google Scholar 

  • Fleer GJ (2010) Polymers at interfaces and in colloidal dispersions. Adv Colloid Interface Sci 159(2):99–116

    Article  CAS  Google Scholar 

  • Fleer GJ, Tuinier R (2008) Analytical phase diagrams for colloids and non-adsorbing polymer. Adv Colloid Interface Sci 143(1–2):1–47

    Article  CAS  Google Scholar 

  • Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16(1):71–75

    Article  CAS  Google Scholar 

  • Gyergyek S, Makovec D, Drofenik M (2011) Colloidal stability of oleic- and ricinoleic-acid-coated magnetic nanoparticles in organic solvents. J Colloid Interface Sci 354(2):498–505

    Article  CAS  Google Scholar 

  • Hamaker HC (1937) The London–van der Waals attraction between spherical particles. Physica 4(10):1058–1072

    Article  CAS  Google Scholar 

  • Hansen CM (2007) Hansen solubility parameters. A user’s handbook, 2nd edn. CRC, Boca Raton

    Book  Google Scholar 

  • Hickstein B, Peuker UA (2009) Modular process for the flexible synthesis of magnetic beads—process and product validation. J Appl Polym Sci 112(4):2366–2373. doi:10.1002/app.29655

    Article  CAS  Google Scholar 

  • Israelachvili JN (1992) Intermolecular & surface forces, 2nd edn. Academic Press, London

    Google Scholar 

  • Jean JH, Yeh SF, Chen CJ (1997) Adsorption of poly(vinyl butyral) in nonaqueous ferrite suspensions. J Mater Res 12(4):1062–1068

    Article  CAS  Google Scholar 

  • Kanicky JR, Shah DO (2002) Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J Colloid Interface Sci 256(1):201–207

    Article  CAS  Google Scholar 

  • Kirchberg S, Rudolph M, Ziegmann G, Peuker UA (2012) Nanocomposites based on technical polymers and sterically functionalized soft magnetic magnetite nanoparticles: synthesis, processing and characterization. J Nanomat 2012 (Article ID 670531): 8 p. doi:10.1155/2012/670531

  • Lafaurie A, Azema N, Ferry L, Lopez-Cuesta JM (2009) Stability parameters for mineral suspensions: improving the dispersion of fillers in thermoplastics. Powder Technol 192(1):92–98. doi:10.1016/j.powtec.2008.11.018

    Article  CAS  Google Scholar 

  • Lalatonne Y, Richardi J, Pileni MP (2004) Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater 3(2):121–125

    Article  CAS  Google Scholar 

  • Lekkerkerker HNW, Tuinier R (2011) Colloids and the depletion interaction, Vol. 833. Lecture Notes in Physics. Springer, Heidelberg. doi:10.1007/978-94-007-1223-2

  • Machunsky S, Peuker UA (2007) Liquid–liquid interfacial transport of nanoparticles. Physical separation in science and engineering 2007 (Article ID 34832):7 pages. doi:10.1155/2007/34832

  • Machunsky S, Grimm P, Schmid HJ, Peuker UA (2009) Liquid–liquid phase transfer of magnetite nanoparticles. Colloid Surf A-Physicochem Eng Asp 348(1–3):186–190. doi:10.1016/j.colsurfa.2009.07.014

    Article  CAS  Google Scholar 

  • Prakash A, Zhu H, Jones CJ, Benoit DN, Ellsworth AZ, Bryant EL, Colvin VL (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3(8):2139–2146

    Article  CAS  Google Scholar 

  • Ruckenstein E, Prieve DC (1976) Adsorption and desorption of particles and their chromatographic separation. AIChE J 22(2):276–283. doi:10.1002/aic.690220209

    Article  CAS  Google Scholar 

  • Rudolph M, Peuker UA (2011) Coagulation and stabilization of sterically functionalized magnetite nanoparticles in an organic solvent with different technical polymers. J Colloid Interface Sci 357(2):292–299

    Article  CAS  Google Scholar 

  • Rudolph M, Erler J, Peuker UA (2012a) A TGA/FTIR perspective of fatty acid adsorbed on magnetite nanoparticles: decomposition steps and magnetite reduction. Colloids Surf A 397:16–23

    Article  CAS  Google Scholar 

  • Rudolph M, Turan C, Kirchberg S, Ziegmann G, Peuker UA (2012b) Nanoparticles in organic solvents with polymers: stability and consequences upon material synthesis through spray drying and melt moulding. In: Tiddy G, Tan RBH (eds) Nanoformulation. The Royal Society of Chemistry, Cambridge, UK, pp 177–187

    Chapter  Google Scholar 

  • Swami A, Kumar A, Sastry M (2003) Formation of water-dispersible gold nanoparticles using a technique based on surface-bound interdigitated bilayers. Langmuir 19(4):1168–1172

    Article  CAS  Google Scholar 

  • Tirtaatmadja V, McKinley HG, Cooper-White JJ (2006) Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration. Phys Fluids 18(4)

  • Zhu H, Tao C, Zheng S, Wu S, Li J (2005) Effect of alkyl chain length on phase transfer of surfactant capped Au nanoparticles across the water/toluene interface. Colloids Surf A 256(1):17–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We very much appreciate the financial support from the Deutsche Forschungsgesellschaft (DFG) by grant PE1160/7-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rudolph.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, M., Peuker, U.A. Phase transfer of agglomerated nanoparticles: deagglomeration by adsorbing grafted molecules and colloidal stability in polymer solutions. J Nanopart Res 14, 990 (2012). https://doi.org/10.1007/s11051-012-0990-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0990-6

Keywords

Navigation