ZnO nanotubes by template-assisted sol–gel route

  • Mikhael Bechelany
  • Amin Amin
  • Arnaud Brioude
  • David Cornu
  • Philippe Miele
Research Paper


We present a simple fabrication process for aligned ZnO nanotubes (NTs). These NTs have been synthesized by a sol–gel template process within the nanopores of a polycarbonate membrane. The obtained NTs are 20-μm long and 200-nm wide which correspond, respectively, to the thickness and channels diameter of the used polycarbonate membrane. Structural and chemical investigations show that these NTs consist in agglomerated ZnO nanoparticles with controlled size (<10 nm). The growth mechanism of these nanoobjects is clarified. These nanomaterials can have a wide range of applications in various fields such as molecular sensing, robotic, and thermoelectric and photovoltaic devices.


ZnO Nanotubes Nanoparticles Polycarbonate membrane Sol–gel Growth mechanism 



We gratefully acknowledge the Centre Technologique des Microstructures (CTμ) of the Université Lyon 1 for access to the SEM, and the platform “Nanofils et Nanotubes de Lyon” and Dr. Umit B. Demirci for the scientific discussion.


  1. Bechelany M, Brodard P et al (2009a) Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection. Nanotechnology 20(45):455302CrossRefGoogle Scholar
  2. Bechelany M, Toury B et al (2009b) Preparation of ZnO nanoparticles localized on SiC@SiO2 nanocables by a physical templating method. J Eur Ceram Soc 29(5):863–867CrossRefGoogle Scholar
  3. Bechelany M, Brodard P et al (2010) Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization. Langmuir 26(17):14364–14371CrossRefGoogle Scholar
  4. Bechelany M, Berodier E, Maeder X et al (2011) New silicon architectures by gold-assisted chemical etching. ACS Appl Mater Interfaces 3(10):3866–3873CrossRefGoogle Scholar
  5. Brodard P et al (2012) Synthesis and attachment of silver nanowires on atomic force microscopy cantilevers for tip-enhanced Raman spectroscopy. J Raman Spectrosc 43:745–749CrossRefGoogle Scholar
  6. Choy JH, Jang ES et al (2004) Hydrothermal route to ZnO nanocoral reefs and nanofibers. Appl Phys Lett 84(2):287–289CrossRefGoogle Scholar
  7. Dejeu J, Bechelany M et al (2010) Reducing the adhesion between surfaces using surface structuring with PS latex particle. ACS Appl Mater Interfaces 2(6):1630–1636CrossRefGoogle Scholar
  8. Dejeu J, Bechelany M et al (2011) Adhesion control for micro- and nanomanipulation. ACS Nano 5(6):4648–4657CrossRefGoogle Scholar
  9. Elias J, Levy-Clement C et al (2010) Hollow urchin-like ZnO thin films by electrochemical deposition. Adv Mater 22(14):1607–1612CrossRefGoogle Scholar
  10. Fan ZY, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5(10):1561–1573CrossRefGoogle Scholar
  11. Fujitani T, Nakamura J (1998) The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catal Lett 56(2–3):119–124CrossRefGoogle Scholar
  12. Gonzalez-Valls I, Lira-Cantu M (2010) Dye sensitized solar cells based on vertically-aligned ZnO nanorods: effect of UV light on power conversion efficiency and lifetime. Energy Environ Sci 3(6):789–795CrossRefGoogle Scholar
  13. Goyal M, Nagahata R et al (2000) Pd catalyzed polycarbonate synthesis from bisphenol A and CO: control of polymer chain—end structure. Polymer 41(6):2289–2293CrossRefGoogle Scholar
  14. Hammad TM, Salem JK (2011) Synthesis and characterization of Mg-doped ZnO hollow spheres. J Nanopart Res 13(5):2205–2212CrossRefGoogle Scholar
  15. Hochbaum AI, Yang PD (2010) Semiconductor nanowires for energy conversion. Chem Rev 110(1):527–546CrossRefGoogle Scholar
  16. Huang MH, Mao S et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRefGoogle Scholar
  17. Koch U, Fojtik A et al (1985) Photochemistry of semiconductor colloids.13. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Lett 122(5):507–510CrossRefGoogle Scholar
  18. Kong XY, Wang ZL (2003) Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett 3(12):1625–1631CrossRefGoogle Scholar
  19. Kong YC, Yu DP et al (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78(4):407–409CrossRefGoogle Scholar
  20. Kowsari E (2011) Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst. J Nanopart Res 13(8):3363–3376CrossRefGoogle Scholar
  21. Krishnakumar T, Jayaprakash R et al (2011) Microwave-assisted synthesis, characterization and ammonia sensing properties of polymer-capped star-shaped zinc oxide nanostructures. J Nanopart Res 13(8):3327–3334CrossRefGoogle Scholar
  22. Leprince-Wang Y, Wang GY et al (2006) Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires. J Cryst Growth 287(1):89–93CrossRefGoogle Scholar
  23. Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125(15):4430–4431CrossRefGoogle Scholar
  24. Lou XW, Archer LA et al (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019CrossRefGoogle Scholar
  25. Marichy C, Bechelany M, Pinna N (2012) Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv Mater 24(8):1017–1032CrossRefGoogle Scholar
  26. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102(29):5566–5572CrossRefGoogle Scholar
  27. Mook WM, Niederberger C et al (2010) Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology 21(5):055701CrossRefGoogle Scholar
  28. Paradis EL, Shuskus AJ (1976) RF sputtered epitaxial ZnO films on sapphire for integrated-optics. Thin Solid Films 38(2):131–141CrossRefGoogle Scholar
  29. Raghavan R, Bechelany M, Parlinska M, Frey D, Mook WM et al (2012) Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties. Appl Phys Lett 100:191912. doi: 10.1063/1.4711767 Google Scholar
  30. Tien LC, Sadik PW et al (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87(22):222106–222108CrossRefGoogle Scholar
  31. Tseng YK, Huang CJ et al (2003) Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Adv Funct Mater 13(10):811–814CrossRefGoogle Scholar
  32. Wang JM, Gao L (2003) Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J Mater Chem 13(10):2551–2554CrossRefGoogle Scholar
  33. Wang YC, Leu IC et al (2002) Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition. J Mater Chem 12(8):2439–2444CrossRefGoogle Scholar
  34. Wu GS, Xie T et al (2005) Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process. Solid State Commun 134(7):485–489CrossRefGoogle Scholar
  35. Xiao YH, Li L et al (2005) Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method. Nanotechnology 16(6):671–674CrossRefGoogle Scholar
  36. Yang PD, Yan HQ et al (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 12(5):323–331CrossRefGoogle Scholar
  37. Yi GC, Wang CR et al (2005) ZnO nanorods: synthesis, characterization and applications. Semicond Sci Technol 20(4):S22–S34CrossRefGoogle Scholar
  38. Zhang H, Ma XY et al (2003) Arrays of ZnO nanowires fabricated by a simple chemical solution route. Nanotechnology 14(4):423–426CrossRefGoogle Scholar
  39. Zheng MJ, Zhang LD et al (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem Phys Lett 363(1–2):123–128CrossRefGoogle Scholar
  40. Zhou ZZ, Ding Y et al (2011) ZnO spheres and nanorods formation: their dependence on agitation in solution synthesis. J Nanopart Res 13(4):1689–1696CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mikhael Bechelany
    • 1
  • Amin Amin
    • 2
  • Arnaud Brioude
    • 2
  • David Cornu
    • 1
  • Philippe Miele
    • 1
  1. 1.Institut Européen des Membranes (IEMM ENSCM UM2 CNRS UMR 5635)Université Montpellier 2MontpellierFrance
  2. 2.Laboratoire des Multimatériaux et InterfacesUMR 5615 CNRS, Université Lyon 1, Université de LyonVilleurbanneFrance

Personalised recommendations