Skip to main content
Log in

ZnO nanotubes by template-assisted sol–gel route

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present a simple fabrication process for aligned ZnO nanotubes (NTs). These NTs have been synthesized by a sol–gel template process within the nanopores of a polycarbonate membrane. The obtained NTs are 20-μm long and 200-nm wide which correspond, respectively, to the thickness and channels diameter of the used polycarbonate membrane. Structural and chemical investigations show that these NTs consist in agglomerated ZnO nanoparticles with controlled size (<10 nm). The growth mechanism of these nanoobjects is clarified. These nanomaterials can have a wide range of applications in various fields such as molecular sensing, robotic, and thermoelectric and photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bechelany M, Brodard P et al (2009a) Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection. Nanotechnology 20(45):455302

    Article  CAS  Google Scholar 

  • Bechelany M, Toury B et al (2009b) Preparation of ZnO nanoparticles localized on SiC@SiO2 nanocables by a physical templating method. J Eur Ceram Soc 29(5):863–867

    Article  CAS  Google Scholar 

  • Bechelany M, Brodard P et al (2010) Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization. Langmuir 26(17):14364–14371

    Article  CAS  Google Scholar 

  • Bechelany M, Berodier E, Maeder X et al (2011) New silicon architectures by gold-assisted chemical etching. ACS Appl Mater Interfaces 3(10):3866–3873

    Article  Google Scholar 

  • Brodard P et al (2012) Synthesis and attachment of silver nanowires on atomic force microscopy cantilevers for tip-enhanced Raman spectroscopy. J Raman Spectrosc 43:745–749

    Article  CAS  Google Scholar 

  • Choy JH, Jang ES et al (2004) Hydrothermal route to ZnO nanocoral reefs and nanofibers. Appl Phys Lett 84(2):287–289

    Article  CAS  Google Scholar 

  • Dejeu J, Bechelany M et al (2010) Reducing the adhesion between surfaces using surface structuring with PS latex particle. ACS Appl Mater Interfaces 2(6):1630–1636

    Article  CAS  Google Scholar 

  • Dejeu J, Bechelany M et al (2011) Adhesion control for micro- and nanomanipulation. ACS Nano 5(6):4648–4657

    Article  CAS  Google Scholar 

  • Elias J, Levy-Clement C et al (2010) Hollow urchin-like ZnO thin films by electrochemical deposition. Adv Mater 22(14):1607–1612

    Article  CAS  Google Scholar 

  • Fan ZY, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5(10):1561–1573

    Article  CAS  Google Scholar 

  • Fujitani T, Nakamura J (1998) The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catal Lett 56(2–3):119–124

    Article  CAS  Google Scholar 

  • Gonzalez-Valls I, Lira-Cantu M (2010) Dye sensitized solar cells based on vertically-aligned ZnO nanorods: effect of UV light on power conversion efficiency and lifetime. Energy Environ Sci 3(6):789–795

    Article  CAS  Google Scholar 

  • Goyal M, Nagahata R et al (2000) Pd catalyzed polycarbonate synthesis from bisphenol A and CO: control of polymer chain—end structure. Polymer 41(6):2289–2293

    Article  CAS  Google Scholar 

  • Hammad TM, Salem JK (2011) Synthesis and characterization of Mg-doped ZnO hollow spheres. J Nanopart Res 13(5):2205–2212

    Article  CAS  Google Scholar 

  • Hochbaum AI, Yang PD (2010) Semiconductor nanowires for energy conversion. Chem Rev 110(1):527–546

    Article  CAS  Google Scholar 

  • Huang MH, Mao S et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899

    Article  CAS  Google Scholar 

  • Koch U, Fojtik A et al (1985) Photochemistry of semiconductor colloids.13. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Lett 122(5):507–510

    Article  CAS  Google Scholar 

  • Kong XY, Wang ZL (2003) Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett 3(12):1625–1631

    Article  CAS  Google Scholar 

  • Kong YC, Yu DP et al (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78(4):407–409

    Article  CAS  Google Scholar 

  • Kowsari E (2011) Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst. J Nanopart Res 13(8):3363–3376

    Article  CAS  Google Scholar 

  • Krishnakumar T, Jayaprakash R et al (2011) Microwave-assisted synthesis, characterization and ammonia sensing properties of polymer-capped star-shaped zinc oxide nanostructures. J Nanopart Res 13(8):3327–3334

    Article  CAS  Google Scholar 

  • Leprince-Wang Y, Wang GY et al (2006) Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires. J Cryst Growth 287(1):89–93

    Article  CAS  Google Scholar 

  • Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125(15):4430–4431

    Article  CAS  Google Scholar 

  • Lou XW, Archer LA et al (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019

    Article  CAS  Google Scholar 

  • Marichy C, Bechelany M, Pinna N (2012) Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv Mater 24(8):1017–1032

    Article  CAS  Google Scholar 

  • Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102(29):5566–5572

    Article  CAS  Google Scholar 

  • Mook WM, Niederberger C et al (2010) Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology 21(5):055701

    Article  CAS  Google Scholar 

  • Paradis EL, Shuskus AJ (1976) RF sputtered epitaxial ZnO films on sapphire for integrated-optics. Thin Solid Films 38(2):131–141

    Article  CAS  Google Scholar 

  • Raghavan R, Bechelany M, Parlinska M, Frey D, Mook WM et al (2012) Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties. Appl Phys Lett 100:191912. doi:10.1063/1.4711767

    Google Scholar 

  • Tien LC, Sadik PW et al (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87(22):222106–222108

    Article  Google Scholar 

  • Tseng YK, Huang CJ et al (2003) Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Adv Funct Mater 13(10):811–814

    Article  CAS  Google Scholar 

  • Wang JM, Gao L (2003) Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J Mater Chem 13(10):2551–2554

    Article  CAS  Google Scholar 

  • Wang YC, Leu IC et al (2002) Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition. J Mater Chem 12(8):2439–2444

    Article  CAS  Google Scholar 

  • Wu GS, Xie T et al (2005) Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process. Solid State Commun 134(7):485–489

    Article  CAS  Google Scholar 

  • Xiao YH, Li L et al (2005) Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method. Nanotechnology 16(6):671–674

    Article  CAS  Google Scholar 

  • Yang PD, Yan HQ et al (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 12(5):323–331

    Article  CAS  Google Scholar 

  • Yi GC, Wang CR et al (2005) ZnO nanorods: synthesis, characterization and applications. Semicond Sci Technol 20(4):S22–S34

    Article  CAS  Google Scholar 

  • Zhang H, Ma XY et al (2003) Arrays of ZnO nanowires fabricated by a simple chemical solution route. Nanotechnology 14(4):423–426

    Article  CAS  Google Scholar 

  • Zheng MJ, Zhang LD et al (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem Phys Lett 363(1–2):123–128

    Article  CAS  Google Scholar 

  • Zhou ZZ, Ding Y et al (2011) ZnO spheres and nanorods formation: their dependence on agitation in solution synthesis. J Nanopart Res 13(4):1689–1696

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Centre Technologique des Microstructures (CTμ) of the Université Lyon 1 for access to the SEM, and the platform “Nanofils et Nanotubes de Lyon” and Dr. Umit B. Demirci for the scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhael Bechelany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechelany, M., Amin, A., Brioude, A. et al. ZnO nanotubes by template-assisted sol–gel route. J Nanopart Res 14, 980 (2012). https://doi.org/10.1007/s11051-012-0980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0980-8

Keywords

Navigation