Advertisement

Tailoring the electrical properties of tellurium nanowires via surface charge transfer doping

  • Lin-Bao Luo
  • Feng-Xia Liang
  • Xiao-Li Huang
  • Tian-Xin Yan
  • Ji-Gang Hu
  • Yong-Qiang Yu
  • Chun-Yan Wu
  • Li Wang
  • Zhi-Feng Zhu
  • Qiang Li
  • Jian-Sheng Jie
Research Paper

Abstract

We presented an attempt to modulate the electrical property of tellurium nanowires (TeNWs) via a surface charge transfer doping method. The TeNWs with length of several tens of micrometers and diameters of 20–50 nm were prepared by a simple hydrothermal method at 160 °C for 20 h. High-resolution transmission electron microscope image combined with selected area electron diffraction pattern shows the single-crystal nature and a growth direction along [001]. Electrical analysis of the individual TeNW-based field effect transistor before and after surface coating reveals that MoO3 and CuPc thin layer coating can greatly enhance both electrical conductivities and hole concentrations. Such a surface hole injection effect, according to the band energy alignment, can be attributed to the huge differences in work functions between TeNW and MoO3/CuPc. Furthermore, the influence of the deposited layer on carrier mobility is strikingly different, which is believed to be due to the discrepancy in surface scattering upon surface coating. The results from this study provide an effective alternative for doping other semiconductor nanostructures.

Keywords

Tellurium nanowires Charge transfer doping Electrical property Hole injection 

Notes

Acknowledgments

The authors thank Dr. Hong-Bing Yao at University of Science and Technology of China for generous help and constructive discussion. This work was supported by the National Natural Science Foundation of China (Nos. 60806028, 61106010, 21101051, and 20901021), the Program for New Century Excellent Talents in University of the Chinese Ministry of Education (NCET-08-0764), the Major Research Plan of the National Natural Science Foundation of China (No. 91027021), and the Fundamental Research Funds for the Central Universities.

References

  1. Bjork M, Schmid H, Knoch J, Riel H, Riess W (2009) Donor deactivation in silicon nanostructures. Nat Nanotechnol 4:103–107. doi: 10.1038/nnano.2008.400 CrossRefGoogle Scholar
  2. Gautam U, Rao C (2004) Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. J Mater Chem 14:2530–2535. doi: 10.1039/B405006A CrossRefGoogle Scholar
  3. Gillessen K, Schairer W (1987) Light emitting diodes: an introduction. Prentice Hall International, LondonGoogle Scholar
  4. He Z, Jie J, Zhang W, Luo L, Fan X, Yuan G, Bello I, Lee S (2009) Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small 5:345–350. doi: 10.1002/smll.200801006 CrossRefGoogle Scholar
  5. Hochbaum A, Yang P (2010) Semiconductor nanowires for energy conversion. Chem Rev 110:527–546. doi: 10.1021/cr900075v CrossRefGoogle Scholar
  6. Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001a) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899. doi: 10.1126/science.1060367 CrossRefGoogle Scholar
  7. Huang Y, Duan X, Cui Y, Lauhon L, Kim K, Lieber C (2001b) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317. doi: 10.1126/science.1066192 CrossRefGoogle Scholar
  8. Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A (2009) P-type doping of organic wide band gap materials by transition metal oxides: a case-study on molybdenum trioxide. Org Electron 10:932–938. doi: 10.1016/j.orgel.2009.05.007 CrossRefGoogle Scholar
  9. Kudrjavcev A (1974) The chemistry and technology of selenium and tellurium. Collet’s, LondonGoogle Scholar
  10. Lan W, Yu S, Qian H, Wan Y (2007) Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: morphology change, crystallization, and transformation into TeO2 in different solvents. Langmuir 23:3409–3417. doi: 10.1021/la063272+ CrossRefGoogle Scholar
  11. Liang F, Qian H (2009) Synthesis of tellurium nanowires and their transport property. Mater Chem Phys 113:523–526. doi: 10.1016/j.matchemphys.2008.07.101 CrossRefGoogle Scholar
  12. Liu J, Zhu J, Zhang C, Liang H, Yu S (2009) Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J Am Chem Soc 132:8945–8952. doi: 10.1021/ja910871s CrossRefGoogle Scholar
  13. Lu W, Lieber C (2002) Nanoelectronics from the bottom up. Nat Mater 6:841–850. doi: 10.1038/nmat2028 CrossRefGoogle Scholar
  14. Lu Q, Gao F, Komarneni S (2005) A green chemical approach to the synthesis of tellurium nanowires. Langmuir 16:6002–6005. doi: 10.1021/la050594p CrossRefGoogle Scholar
  15. Luo L, Jie J, Zhang W, He Z, Wang J, Yuan G, Zhang W, Wu C, Lee S (2009) Silicon nanowire sensors for Hg2+ and Cd2+ ions. Appl Phys Lett 94:193101. doi: 19310110.1063/1.3120281 CrossRefGoogle Scholar
  16. Luo L, Yang X, Liang F, Jie J, Li Q, Zhu ZF, Wu CY, Yu Y, Wang L (2012) Transparent and flexible selenium nanobelt-based visible light photodetector. CrystEngComm 14:1942–1947. doi: 10.1039.c2ra01269c CrossRefGoogle Scholar
  17. Mayers B, Xia Y (2002) Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv Mater 14:279–282. doi: 10.1002/1521-4095(20020219 CrossRefGoogle Scholar
  18. Morales A, Lieber C (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211. doi: 10.1126/science.279.5348.208 CrossRefGoogle Scholar
  19. Ng T, Lo M, Zhou Y, Liu Z, Lee C, Kwon O, Lee S (2009) Ambient effects on fullerene/copper phthalocyanine photovoltaic interface. Appl Phys Lett 94:193304. doi: 10.1063/1.3118580 CrossRefGoogle Scholar
  20. Patolsky F, Zheng G, Lieber C (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 1:1711–1724. doi: 10.1038.nprot.2006.227 CrossRefGoogle Scholar
  21. Qi D, Chen W, Gao X, Wang L, Chen S, Loh KP, Wee ATS (2007) Surface transfer doping of diamond (100) by tetrafluoro-tetracyanoquinodimethane. J Am Chem Soc 129:8084–8085. doi: 10.1021/ja072133r CrossRefGoogle Scholar
  22. Qian H, Luo L, Gong J, Yu S, Fei L (2006a) Te@cross-linked PVA core-shell structures synthesized by a one-step synergistic soft-hard template process. Cryst Growth Des 18:2102–2108. doi: 10.1021/cg050412p Google Scholar
  23. Qian H, Yu S, Gong J, Luo L, Fei L (2006b) High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22:3830–3835. doi: 10.1021/la053021l CrossRefGoogle Scholar
  24. Schmidt V, Wittemann JV, Senz S, Gösele U (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21:2681–2702. doi: 10.1002/adma.200803754 CrossRefGoogle Scholar
  25. Sze S, Ng K (2007) Physics of semiconductor devices. Wiley-Blackwell, Boston, MAGoogle Scholar
  26. Tao H, Liu H, Qin D, Chan K, Chen J, Cao Y (2003) High mobility field effect transistors from solution-processed needle-like tellurium nanowires. J Nanosci Nanotechnol 10:7997–8003. doi: 10.1166/jnn.2010.3000 CrossRefGoogle Scholar
  27. Wang Q, Li G, Liu Y, Xu S, Wang K, Chen J (2007) Fabrication and growth mechanism of selenium and tellurium nanobelts through a vacuum vapor deposition route. J Phys Chem C 111:12926–12932. doi: 10.1021/jp073902w CrossRefGoogle Scholar
  28. Wu D, Jiang Y, Li S, Li F, Li J, Lan X, Zhang Y, Wu C, Luo L, Jie J (2011) Construction of high-quality CdS:Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications. Nanotechnology 22:405201. doi: 10.1088/0957-4484/22/40/405201 CrossRefGoogle Scholar
  29. Xia Y, Yang P, Sun G, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi: 10.1002/adma.200390087 CrossRefGoogle Scholar
  30. Xie Q, Zhou D, Huang W, Zhang W, Ma D, Hu X, Qian Y (2006) Large-scale synthesis and growth mechanism of single-crystal Se nanobelts. Cryst Growth Des 6:1514–1517. doi: 10.1021/cg050493p CrossRefGoogle Scholar
  31. Yuan G, Ng T, Zhou Y, Wang F, Zhang W, Tang Y, Tang H, Luo L, Wang P, Bello I (2010) p-type conductivity in silicon nanowires induced by heterojunction interface charge transfer. Appl Phys Lett 97:153126. doi: 10.1063/1.3501122 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lin-Bao Luo
    • 1
  • Feng-Xia Liang
    • 2
  • Xiao-Li Huang
    • 1
  • Tian-Xin Yan
    • 1
  • Ji-Gang Hu
    • 1
  • Yong-Qiang Yu
    • 1
  • Chun-Yan Wu
    • 1
  • Li Wang
    • 1
  • Zhi-Feng Zhu
    • 1
  • Qiang Li
    • 1
  • Jian-Sheng Jie
    • 1
  1. 1.School of Electronic Science and Applied PhysicsHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.Department of Physics and Materials ScienceCity University of Hong KongHong Kong SARPeople’s Republic of China

Personalised recommendations