Bivalent alkyne-bisphosphonate as clickable and solid anchor to elaborate multifunctional iron oxide nanoparticles with microwave enhancement

  • Erwann GuéninEmail author
  • Julie Hardouin
  • Yoann Lalatonne
  • Laurence Motte
Research Paper


We report the elaboration of clickable superparamagnetic nanoparticles that act as a scaffold for further modifications by click chemistry. This nano platform is easily obtained by coating iron oxide nanoparticle γ-Fe2O3, with a new bifunctional molecule (1-hydroxy-1-phosphonopent-4-ynyl)phosphonic acid (HMBPyne). The HMBP and the alkyne functions act respectively as anchoring surface group and click chemistry functionality. We evaluate the functionalization of this new “clickable” nanoplateform using Huisgen 1,3-cycloaddition as model reaction and demonstrate the potential of microwave irradiation to increase the grafting yield. The effectiveness of click chemistry for the modification of mNPs is explored with a diverse array of functional species.


Nanoparticle functionalization Click chemistry Huisgen 1,3-cycloaddition Microwave Iron oxide nanoparticle 



The authors thank the Magnisense Corporation for providing a MIAplex Reader. The authors also thank N. Lièvre (UFR SMBH, Université Paris 13, Bobigny, France) for TEM images and I. Milosevic (UMR 7244 CNRS, Université Paris 13, Bobigny, France) for her assistance concerning XRD.


  1. Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconj Chem 22(5):825–858. doi: 10.1021/bc200065z CrossRefGoogle Scholar
  2. Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Ultra stable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9(12):4042–4048. doi: 10.1021/nl902212q CrossRefGoogle Scholar
  3. Baruwati B, Nadagouda MN, Varma RS (2008) Bulk synthesis of monodisperse ferrite nanoparticles at water−organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J Phys Chem C 112(47):18399–18404. doi: 10.1021/jp807245g Google Scholar
  4. Basti H, Ben Tahar L, Smiri LS, Herbst F, Vaulay MJ, Chau F, Ammar S, Benderbous S (2011) Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341(2):248–254CrossRefGoogle Scholar
  5. Benyettou F, Lalatonne Y, Sainte-Catherine O, Monteil M, Motte L (2009) Super paramagnetic nano vector with anti-cancer properties: γFe2O3@Zoledronate. Int J Pharm 379(2):324–327CrossRefGoogle Scholar
  6. Benyettou F, Guénin E, Lalatonne L, Motte L (2011) Microwave assisted nano particle surface functionalization. Nanotechnology 22(5):055102CrossRefGoogle Scholar
  7. Bertorelle F, Wilhelm C, Roger J, Gazeau F, Ménager C, Cabuil V (2006) Fluorescence-modified super paramagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 22(12):5385–5391. doi: 10.1021/la052710u CrossRefGoogle Scholar
  8. Bilecka I, Djerdj I, Niederberger M (2008) One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun 21(7):886–888CrossRefGoogle Scholar
  9. Bouillon C, Meyer A, Vidal S, Jochum A, Chevolot Y, Cloarec J-P, Praly J-P, Vasseur J-J, Morvan F (2006) Microwave assisted “click” chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. J Org Chem 71:4700–4702CrossRefGoogle Scholar
  10. Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841–1134. doi: 10.1021/ar200231d Special issue on theranostic nanomedecineCrossRefGoogle Scholar
  11. Dave SR, Gao X (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):583–609. doi: 10.1002/wnan.51 CrossRefGoogle Scholar
  12. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370CrossRefGoogle Scholar
  13. Guénin E, Monteil M, Bouchemal N, Prangé T, Lecouvey M (2007) Syntheses of phosphonic esters of alendronate, pamidronate and neridronate. Eur J Org Chem 20:3380–3391CrossRefGoogle Scholar
  14. Haun JB, Yoon T-J, Lee H, Weissleder R (2010) Magnetic nano particle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):291–304. doi: 10.1002/wnan.84 CrossRefGoogle Scholar
  15. Karimi A, Denizot B, Hindré F, Filmon R, Greneche J-M, Laurent S, Daou T, Begin-Colin S, Le Jeune J-J (2010) Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated super paramagnetic iron oxide nanoparticles: formulation and physicochemical studies. J Nanopart Res 12(4):1239–1248. doi: 10.1007/s11051-009-9815-7 CrossRefGoogle Scholar
  16. Lalatonne Y, Paris C, Serfaty JM, Weinmann P, Lecouvey M, Motte L (2008) Bis-phosphonates-ultra small super paramagnetic iron oxide nanoparticles: a platform towards diagnosis and therapy. Chem Commun 14(22):2553–2555CrossRefGoogle Scholar
  17. Li N, Binder WH (2011) Click-chemistry for nano particle-modification. J Mater Chem 21(42):16717–16734CrossRefGoogle Scholar
  18. Mandal SK, Lequeux N, Rotenberg B, Tramier M, Fattaccioli J, Bibette J, Dubertret B (2005) Encapsulation of magnetic and fluorescent nanoparticles in emulsion droplets. Langmuir 21(9):4175–4179. doi: 10.1021/la047025m CrossRefGoogle Scholar
  19. Martin A, Hickey J, Ablack A, Lewis J, Luyt L, Gillies E (2010) Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. J Nanopart Res 12(5):1599–1608. doi: 10.1007/s11051-009-9681-3 CrossRefGoogle Scholar
  20. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251CrossRefGoogle Scholar
  21. Meldal M, Tornoe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108(8):2952–3015. doi: 10.1021/cr0783479 CrossRefGoogle Scholar
  22. Migianu E, Guénin E, Lecouvey M (2005) New efficient synthesis of 1-hydroxymethylene-1,1-bisphosphonic monomethyl esters. Synlett 5:0425–0428Google Scholar
  23. Milosevic I, Jouni H, David C, Warmont F, Bonnin D, Motte L (2011) Facile microwave process in water for the fabrication of magnetic nano rods. J Phys Chem C 115(39):18999–19004. doi: 10.1021/jp205334v CrossRefGoogle Scholar
  24. Motte L, Benyettou F, de Beaucorps C, Lecouvey M, Milesovic I, Lalatonne Y (2010) Multimodal super paramagnetic nanoplatform for clinical applications: immunoassays, imaging & therapy. Faraday Discuss 149:211–225CrossRefGoogle Scholar
  25. Moumen N, Veillet P, Pileni MP (1995) Controlled preparation of nano size cobalt ferrite magnetic particles. J Magn Magn Mater 149:67–71CrossRefGoogle Scholar
  26. Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L (2002) DNA-based magnetic nano particle assembly acts as a magnetic relaxation nanoswitch allowing screening of dna-cleaving agents. J Am Chem Soc 124(12):2856–2857. doi: 10.1021/ja017773n CrossRefGoogle Scholar
  27. Perrier T, Saulnier P, Benoît J-P (2010) Methods for the functionalisation of nanoparticles: new insights and perspectives. Chem A Eur J 16(38):11516–11529. doi: 10.1002/chem.201000808 CrossRefGoogle Scholar
  28. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo Y-EL, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686. doi: 10.1158/1078-0432.ccr-06-0946 CrossRefGoogle Scholar
  29. Skarpos H, Osipov SN, Vorob’eva DV, Odinets IL, Lork E, Roschenthaler G-V (2007) Synthesis of functionalized bisphosphonates via click chemistry. Org Biomol Chem 5(15):2361–2367CrossRefGoogle Scholar
  30. Sommer WJ, Weck M (2007) Facile functionalization of gold nanoparticles via microwave-assisted 1,3 dipolar cycloaddition. Langmuir 23(24):11991–11995. doi: 10.1021/la7018742 CrossRefGoogle Scholar
  31. Thielbeer F, Donaldson K, Bradley M (2011) Zeta potential mediated reaction monitoring on nano and micro particles. Bioconj Chem 22(2):144–150. doi: 10.1021/bc1005015 CrossRefGoogle Scholar
  32. Toulemon D, Pichon BP, Cattoen X, Man MWC, Begin-Colin S (2011) 2D assembly of non-interacting magnetic iron oxide nanoparticles via “click” chemistry. Chem Commun 47(43):11954–11956CrossRefGoogle Scholar
  33. Uhlig N, Li C-J (2011) Alkynes as an eco-compatible “on-call” functionality orthogonal to biological conditions in water. Chem Sci 2(7):1241–1249CrossRefGoogle Scholar
  34. White MA, Johnson JA, Koberstein JT, Turro NJ (2006) Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 128(35):11356–11357. doi: 10.1021/ja064041s CrossRefGoogle Scholar
  35. Willis AL, Turro NJ, O’Brien S (2005) Spectroscopic characterization of the surface of iron oxide nanocrystals. Chem Mater 17(24):5970–5975. doi: 10.1021/cm051370v CrossRefGoogle Scholar
  36. Xue X, Wang F, Liu X (2011) Emerging functional nano materials for therapeutics. J Mater Chem 21(35):13107–13127CrossRefGoogle Scholar
  37. Zhang W, Zhang Y, Shi X, Liang C, Xian Y (2011) Rhodamine-B decorated super paramagnetic iron oxide nanoparticles: preparation, characterization and their optical/magnetic properties. J Mater Chem 21(40):16177–16183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Erwann Guénin
    • 1
    Email author
  • Julie Hardouin
    • 2
  • Yoann Lalatonne
    • 1
  • Laurence Motte
    • 1
  1. 1.CSPBAT Laboratory, UMR 7244 CNRSUniversité Paris 13, Sorbonne Paris CitéBobignyFrance
  2. 2.PBS Laboratory, UMR 6270 CNRSUniversity of RouenRouenFrance

Personalised recommendations