Skip to main content

Advertisement

Log in

Evolution of Co n Al clusters and chemisorption of hydrogen on Co n Al clusters

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The growth behavior of Co n Al (n = 1–15) and the chemisorptions of hydrogen on the ground state geometries have been studied using the density functional theory (DFT) within the generalized gradient approximation (GGA). The growth pattern for Co n Al is Al-substituted Co n+1 clusters, and it keeps the similar frameworks of the most stable Co n+1 clusters except for n = 2, 3, and 6. The Al atom substitutes the surface atom of the Co n+1 clusters for n ≤ 13. Starting from n = 14, the Al atom completely falls into the center of the Co-frame. The dissociation energy, the second-order energy differences, and the HOMO–LUMO gaps indicate that the magic numbers of the calculated Co n Al clusters are 7, 9, and 13, corresponding to the high symmetrical structures. To my knowledge, this is the first time that a systematic study of chemisorption of hydrogen on cobalt aluminum clusters. The twofold bridge site is identified to be the most favorable chemisorptions site for one hydrogen adsorption on Co n Al (n = 1–6, 8, 10), and two hydrogen adsorption on Co n Al (n = 1–7), while threefold hollow site is preferred for one hydrogen adsorption on Co n Al (n = 7, 9, 11–15) and two hydrogen adsorption on Co n Al (n = 8–10, 12–15) clusters. The ground state structure of two hydrogen adsorption on Co11Al is exceptional. In general, the binding energy of both H and 2H of Co n Al (n = 1–12) is found to increase with the cluster size. And the result shows that large binding energies of the hydrogen atoms and large fragmentation energies for Co11AlH and Co12AlH make these species behaving like magic clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Behm JM, Brugh DJ, Morse MD (1994) Spectroscopic analysis of the open 3d subshell transition metal aluminides: AlV, AlCr, and AlCo. J Chem Phys 101(8):6487–6499

    Article  Google Scholar 

  • Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517

    Article  CAS  Google Scholar 

  • Dhilip Kumar TJ, Tarakeshwar P, Balakrishnan N (2009) Geometric and electronic structures of hydrogenated transition metal (Sc, Ti, Zr) clusters. Phys Rev B 79(20): 205415-1-11

    Google Scholar 

  • Hales DA, Su CX, Lian L, Armentrout BP (1994) Collisioninduced dissociation of Co + n (n = 2–18) with Xe: bond energies of cationic and neutral cobalt clusters, dissociation pathways, and structures. J Chem Phys 100(2):1049–1057

    Article  CAS  Google Scholar 

  • Huda MN, Kleinman L (2006) Hydrogen adsorption and dissociation on small platinum clusters: an electronic structure density functional study. Phys Rev B 74(19):195407-1-7

    Google Scholar 

  • Kant A, Strauss B (1964) Dissociation energies of diatomic molecules of the transition elements. II. Titanium, chromium, manganese, and cobalt. J Chem Phys 41(12):3806–3808

    Article  CAS  Google Scholar 

  • Laguna A, Lasanta T, Lopez-de-Luzuriaga JM, Monge M, Naumov P, Olmos ME (2010) Combining aurophilic interactions and halogen bonding to control the luminescence from bimetallic gold silver clusters. J Am Chem Soc 132(2):456–457

    Article  CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  • Lu C, Kuang XY, Lu ZW, Mao AJ, Ma YM (2011) Determination of structures, stabilities, and electronic properties for bimetallic cesium-doped gold clusters: a density functional theory study. J Phys Chem A 115(33):9273–9281

    Article  CAS  Google Scholar 

  • Ma QM, Xie Z, Wang J, Liu Y, Li YC (2006) Structures, stabilities and magnetic properties of small Co clusters. Phys Lett A 358(4):289–296

    Article  CAS  Google Scholar 

  • Menezes WJC, Knickelbein MB (1991) Bimetallic clusters of cobalt and aluminum: ionization potentials versus reactivity, and the importance of geometric structure. Chem Phys Lett 183(5–6):357–362

    Article  CAS  Google Scholar 

  • Menezes WJC, Knickelbein MB (1993) The evolution of electronic structure in Al n Co m . Z Phys D 26:322–325

    Article  CAS  Google Scholar 

  • Nonose S, Sone Y, Onodera K, Sudo S, Kaya K (1989) Reactivity study of alloy clusters made of aluminum and some transition metals with hydrogen. Chem Phys Lett 164(4):427–432

    Article  CAS  Google Scholar 

  • Pramann A, Nakajima A, Kaya K (2001) Photoelectron spectroscopy of bimetallic aluminum cobalt cluster anions: comparison of electronic structure and hydrogen chemisorption rates. J Chem Phys 115(12):5404–5410

    Article  CAS  Google Scholar 

  • Rosen B (1970) Spectroscopic data relative to diatomic molecules. Pergamon, Oxford

    Google Scholar 

  • Varano A, Henry DJ, Yarovsky I (2010) DFT study of H adsorption on magnesium-doped aluminum clusters. J Phys Chem A 114(10):3602–3608

    Article  CAS  Google Scholar 

  • Wang SY, Yu JZ, Mizuseki H, Yan JA (2004) First-principles study of the electronic structures of icosahedral TiN(N = 13,19,43,55) clusters. J Chem Phys 120(18):8463–8468

    Article  CAS  Google Scholar 

  • Xie Z, Ma QM, Liu Y, Li YC (2005) First-principles study of the stability and Jahn-Teller distortion of nickel clusters. Phys Lett A 342(5):459–467

    Article  CAS  Google Scholar 

  • Zanti G, Peeters D (2010) DFT study of bimetallic palladium gold clusters Pd n Au m of low nuclearities (n + m <14). J Phys Chem A 114(38):10345–10356

    Article  CAS  Google Scholar 

  • Zhang DB, Shen J (2004) Ground state, growth, and electronic properties of small lanthanum clusters. J Chem Phys 120(11):5104–5109

    Article  CAS  Google Scholar 

  • Zhao YR, Kuang XY, Zheng BB, Li YF, Wang SJ (2011) Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Au n (M = Ag, Cu; n = 1–10) clusters: comparison with Pure Gold clusters. J Phys Chem A 115(5):569–576

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), Youth Foundation of Shanxi (Grant No. 2007021009), and the Youth Academic Leader of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L. Evolution of Co n Al clusters and chemisorption of hydrogen on Co n Al clusters. J Nanopart Res 14, 957 (2012). https://doi.org/10.1007/s11051-012-0957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0957-7

Keywords

Navigation