Semi-synthetic biotin imprinting onto avidin crosslinked gold–silver nanoparticles

  • Ayça Atılır Özcan
  • Arzu Ersöz
  • Deniz Hür
  • Filiz Yılmaz
  • Aytaç Gültekin
  • Adil Denizli
  • Rıdvan Say
Research Paper


This study is a different and new application of molecular imprinted polymers (MIPs) based on sensor technologies. In this study, semi-synthetic biotin imprinted polymeric shell has been decorated onto the surface of avidin crosslinked Au/Ag nanoclusters using bis (2-2′-bipyridyl) MATyr-MATrp-ruthenium(II) (MATyr-Ru-MATrp) as photosensitive monomer. The synthesized nanoclusters have been used the recognition of biotin by flourometric method. Synthesis of the photosensitive monomers has been realized by AmiNoAcid (monomer) Decorated and Light Underpinning Conjugation Approach (ANADOLUCA) method. This method provides a strategy for the preparation of photosensitive ruthenium based aminoacid monomers and oligomers, aminoacid monomer-protein crosslinking using photosensitation and conjugation approach on micro and nano-structures by ruthenium-chelate based monomers. The affinity constant (K a) of biotin imprinted Au/Ag nanoclusters has been determined using the Scatchard method and found to be 3.89 × 105 M−1. The obtained calibration graph is linear for the range of 0.051 and 2.50 μM of biotin. The detection limit of biotin has been found to be 15 nM. Also, the reusability of these nanoclusters has been investigated and it has been observed that the same clusters could be used 10 times during a long period without any binding capacity decreasing.


Molecular imprinting Sensor Biotin Nanocluster Conjugation method 

Supplementary material

11051_2012_945_MOESM1_ESM.docx (45 kb)
TEM image of Au/Ag nanoclusters. The data were recorded on a FEI 120 kV electron microscope (DOCX 44 kb)


  1. Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130:16351–16357. doi: 10.1021/ja8071258 CrossRefGoogle Scholar
  2. Anzai JI, Kobayashi Y, Suzuki Y, Takeshita H, Chen Q, Osa T, Hoshi T, Du XY (1998) Enzyme sensors prepared by layer-by-layer deposition of enzymes on a platinum electrode through avidin–biotin interaction. Sens Actuators B 52:3–9. doi: 10.1016/S0925-4005(98)00248-2 CrossRefGoogle Scholar
  3. Attwood PV (1995) The structure and mechanism of action of pyruvate carboxylase. Int J Biochem Cell Biol 27:231–249CrossRefGoogle Scholar
  4. Brown KC, Kodadek T (2001) Protein cross-linking mediated by metal ion complexes. Met Ions Biol Syst 38:351–384Google Scholar
  5. Brust M, Bethell D, Kiely CJ, Schiffen DJ (1998) Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14:5425–5429. doi: 10.1021/la980557g CrossRefGoogle Scholar
  6. Choi J-S, Jun Y-W, Yeon S-I, Kim HC, Shin J-S, Cheon J (2006) Biocompatible heterostructured nanoparticles for multimodal biological detection. J Am Chem Soc 128:15982–15983. doi: 10.1021/ja066547g CrossRefGoogle Scholar
  7. Choi J, Wang NS, Reipa V (2008) Conjugation of the photoluminescent silicon nanoparticles to streptavidin. Bioconjugate Chem 19:680–685. doi: 10.10121/bc700373y CrossRefGoogle Scholar
  8. Diltemiz SE, Say R, Büyüktiryaki S, Hür D, Denizli A, Ersöz A (2008) Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta 75:890–896. doi: 10.1016/j.talanta.2007.12.036 CrossRefGoogle Scholar
  9. Duroux-Richard I, Philippe V, Guy S, Jean-François G, Eric R, Bernard M, Claude B, Jacky M, Jean-Claude B (2005) Crosslinking photosensitized by a ruthenium chelate as a tool for labeling and topographical studies of G-protein-coupled receptors. Chem Biol 12:15–24CrossRefGoogle Scholar
  10. Evans IP, Spencer A, Wilkinson G (1973) Dichlorotetrakis(dimethyl sulphoxide)ruthenium(II) and its use as a source material for some new ruthenium(II) complexes. J Chem Soc Dalton Trans 1710:204–209. doi: 10.1039/DT9730000204 CrossRefGoogle Scholar
  11. Fancy DA, Kodadek T (1999) Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc Natl Acad Sci USA 96:6020–6024. doi: 10.1073/pnas.96.11.6020 CrossRefGoogle Scholar
  12. Green NM (1975) Avidin. Adv Protein Chem 29:85–133CrossRefGoogle Scholar
  13. Green NM, Toms EJ (1973) The properties of subunits of avidin coupled to sepharose. Biochem J 133:687–698Google Scholar
  14. Gregory KJ, Bachas LG (2001) Use of a biomimetic peptide in the design of a competitive binding assay for biotin and biotin analogues. Anal Biochem 289:82–88CrossRefGoogle Scholar
  15. Hawkins DM, Stevenson D, Reddy SM (2005) Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs). Anal Chim Acta 542:61–65. doi: 10.1016/j.aca.2005.01.052 CrossRefGoogle Scholar
  16. Hezinger AFE, Tessmar J, Göpferich A (2008) Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics. Eur J Pharm Biopharm 68:138–152CrossRefGoogle Scholar
  17. Hu S, Yang H, Cai R, Liu Z, Yang X (2009) Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay. Talanta 80:454–458. doi: 10.1016/j.talanta.2009.07.01 CrossRefGoogle Scholar
  18. Huh Y-M, Jun Y-W, Song H-T, Kim S, Choi J-S, Lee J-H, Yoon S, Kim K-S, Suh J-S, Cheon J (2005) Vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127:12387–12391CrossRefGoogle Scholar
  19. Hur D, Ekti SF, Say R (2007) Acylbenzotriazole mediated synthesis of some methacrylamido amino acids. Lett Org Chem 4:585–587. doi: 10.2174/157017807782795556 CrossRefGoogle Scholar
  20. Izenberg NR, Murrray GM, Pilato RS, Baird LM, Levin SM, Van Houten KA (2009) Astrobiological molecularly imprinted polymer sensors. Planet Space Sci 57:846–853CrossRefGoogle Scholar
  21. Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53:2002–2009. doi: 10.1373/clinchem.2007.090795 CrossRefGoogle Scholar
  22. Jitrapakdee S, Wallace JC (1999) Structure function and regulation of pyruvate carboxylase. Biochem J 340:1–16CrossRefGoogle Scholar
  23. Knowles JR (1989) The mechanism of biotin-dependent enzymes. Annu Rev Biochem 58:195–221CrossRefGoogle Scholar
  24. Kriz D, Ramstrom O, Mosbach K (1997) Molecular imprinting—new possibilities for sensor technology. Anal Chem 69:A345–A349. doi: 10.1021/ac971657e CrossRefGoogle Scholar
  25. Livaniou E, Costopoulou D, Vassiliadou I, Leondiadis L, Nyalala JO, Ithakissios DS, Evangelatos GP (2000) Analytical techniques for determining biotin. J Chromatogr A 881:331–343CrossRefGoogle Scholar
  26. Livnah O, Bayer EA, Wilchek M, Sussman JL (1993) Three-dimensional structures of avidin and the avidin–biotin complex. Proc Natl Acad Sci USA 90:5076–5080CrossRefGoogle Scholar
  27. Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC (2009) Review: biofunctionalized quantum dots in biology and medicine. J Nanomater 38:1–17. doi: 10.1155/2009/815734 CrossRefGoogle Scholar
  28. Morpurgo M, Radu A, Bayer EA, Wilchek M (2004) DNA condensation by the high-affinity interaction with avidin. Mol Recognit 17:558–566. doi: 10.1002/jmr.689 CrossRefGoogle Scholar
  29. Pérez-Luna VH, O’Brien MJ, Opperman KA, Hampton PD, López GP, Klumb LA, Stayton PS (1999) Molecular recognition between genetically engineered streptavidin and surface bound biotin. J Am Chem Soc 121:6469–6478. doi: 10.1021/ja983984p CrossRefGoogle Scholar
  30. Piletska E, Piletsky S, Karim K, Terpetschnig E, Turner A (2004) Biotin-specific synthetic receptors prepared using molecular imprinting. Anal Chim Acta 504:179–183. doi: 10.1016/S0003-2670(03)00813-4 CrossRefGoogle Scholar
  31. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562. doi: 10.1021/cr030067f CrossRefGoogle Scholar
  32. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789. doi: 10.1021/bm061197b CrossRefGoogle Scholar
  33. Sanchez ER, Gessel MC, Groy TL, Caudle MT (2002) Interaction of biotin with Mg–O bonds: bifunctional binding and recognition of biotin and related ligands by the Mg(15-crown-5)2+ unit. J Am Chem Soc 124:1933–1940. doi: 10.1021/ja016641r CrossRefGoogle Scholar
  34. Say R (2011) Photosensitive amino acid-monomer linkage and bioconjugation applications in life sciences and biotechnology. World Intellectual Property Organization–Patent Scope, Pub. No. WO/2011/070402, Int. Appl. No. PCT/IB2009.055707
  35. Say R, Gultekin A, Atılır Özcan A, Denizli A, Ersoz A (2009) Preparation of new molecularly imprinted quartz crystal microbalance hybride sensor system for 8-hydroxy-2-deoxyguanosine determination. Anal Chim Acta 640:82–86. doi: 10.1016/j.aca.2009.03.022 CrossRefGoogle Scholar
  36. Say R, Kilic G, Atılır Özcan A, Hur D, Yilmaz F, Kutlu M, Yazar S, Denzli A, Emir Diltemiz S, Ersoz A (2011) Investigation of photosensitively bioconjugated targeted quantum dots for the labeling of Cu/Zn superoxide dismutase in fixed cells and tissue sections. Histochem Cell Biol 135:523–530. doi: 10.1007/s00418-011-0801-7 CrossRefGoogle Scholar
  37. Walther C, Meyer K, Rennert R, Neundorf I (2008) Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjugate Chem 19:2346–2356. doi: 10.1021/bc800172q CrossRefGoogle Scholar
  38. Wang F, Tan WB, Zhang Y, Fan X, Wang M (2006) Luminescent nanomaterials for biological labeling. Nanotechnology 17:R1–R13CrossRefGoogle Scholar
  39. Wilchek M, Bayer EA (1988) The avidin–biotin complex in bioanalytical applications. Anal Biochem 171:1–32. doi: 10.1016/0003-2697(88)90120-0 CrossRefGoogle Scholar
  40. Wilchek M, Bayer EA (1999) Foreword and introduction to the book (strept)avidin–biotin system. Biomol Eng 16:1–4CrossRefGoogle Scholar
  41. Wilchek M, Bayer EA, Livnah O (2006) Essentials of biorecognition: the (strept)avidin–biotin system as a model for protein–protein and protein–ligand interaction. Immunol Lett 103:27–32. doi: 10.1016/j.imlet.2005.10.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ayça Atılır Özcan
    • 1
  • Arzu Ersöz
    • 1
  • Deniz Hür
    • 1
  • Filiz Yılmaz
    • 1
  • Aytaç Gültekin
    • 2
  • Adil Denizli
    • 3
  • Rıdvan Say
    • 1
  1. 1.Department of ChemistryAnadolu UniversityEskişehirTurkey
  2. 2.Department of Engineering of Energy SystemsKaramanoğlu Mehmetbey UniversityKaramanTurkey
  3. 3.Department of ChemistryHacettepe UniversityAnkaraTurkey

Personalised recommendations