Aggregation of glutathione-functionalized Au nanoparticles induced by Ni2+ ions

Research Paper


Aggregation of glutathione (GSH)-functionalized Au nanoparticles induced by Ni2+ ions were found to be related to pH of the solutions. At pH lower than 9.0, introduction of Ni2+ ions was less effective to induce aggregation of the Au nanoparticles. At pH around 9.8, the Au nanoparticles experienced extensive aggregation upon the addition of Ni2+ ions. When pH was higher than 10.5, Ni2+ ion-induced aggregation of the Au nanoparticles was suppressed gradually with increasing pH. It was identified that such pH-mediated aggregation behaviors are attributed to the different coordination fashions of GSH on the Au nanoparticle surface with Ni2+ ions. At pH lower than 9.0, addition of Ni2+ ions was less effective to induce aggregation of the Au nanoparticles when only the carboxyl group of the glutamyl residue was available for the metal ions. The Au nanoparticles underwent extensive aggregation at pH around 9.8 when both the carboxyl and deprotonated amine groups of the glutamyl residue in GSH could coordinate with the metal ions. At pH higher than 10.5, the coordination was gradually suppressed by the hydroxyl groups in solutions, addition of Ni2+ ions is less effective to cross-link the Au nanoparticles. Such a work is helpful for understanding the sensitivity and selectivity of GSH-functionalized Au nanoparticles to metal ions.

Graphical abstract


Au nanoparticles Glutathione Aggregation Metal ions 



This study was supported by the National Research Fund for Fundamental Key Project (No. 2009CB939701, 2011CB935800) and the National Nature Science Foundation of China (21073078, 50825202).

Supplementary material

11051_2012_929_MOESM1_ESM.doc (416 kb)
Supplementary material 1 (DOC 416 kb)


  1. Aslan K, Luhrs CC, Perez-Luna VH (2004) Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. J Phys Chem B 108:15631–15639. doi: 10.1021/jp036089n CrossRefGoogle Scholar
  2. Bal W, Kasprzak KS (2002) Induction of oxidative DNA damage by carcinogenic metals. Toxicol Lett 127:55–62. doi: 10.1016/S0378-4274(01)00483-0 CrossRefGoogle Scholar
  3. Bieri M, Bürgi T (2005) l-Glutathione chemisorption on gold and acid/base induced structural changes: a PM-IRRAS and time-resolved in situ ATR-IR spectroscopic study. Langmuir 21:1354–1363. doi: 10.1021/la047735s CrossRefGoogle Scholar
  4. Cao YC, Jin R, Thaxton CS, Mirkin CA (2005) A two-color-change, nanoparticle-based method for DNA detection. Talanta 67:449–455. doi: 10.1016/j.talanta.2005.06.063 CrossRefGoogle Scholar
  5. Chai F, Wang CG, Wang TT, Su ZM (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. Appl Mater Interface 2:1466–1470. doi: 10.1021am100107k CrossRefGoogle Scholar
  6. Darbha GK, Singh AK, Rai US, Yu E, Yu HT, Ray PC (2008) Selective detection of mercury(II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130:8038–8043. doi: 10.1021/ja801412b CrossRefGoogle Scholar
  7. Dean J A (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill Book Co., New York, p 884Google Scholar
  8. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1080. doi: 10.1126/science.277.5329.1078 CrossRefGoogle Scholar
  9. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862. doi: 10.1021/cr0680282 CrossRefGoogle Scholar
  10. Guan J, Jiang L, Li J, Yang WS (2008) pH-dependent aggregation of histidine-functionalized Au nanoparticles induced by Fe3+ ions. J Phys Chem C 112:3267–3271. doi: 10.1021/jp7097763 CrossRefGoogle Scholar
  11. Hazarika P, Ceyhan B, Niemeyer CM (2004) Reversible switching of DNA–gold nanoparticle aggregation. Angew Chem Int Ed 43:6469–6471. doi: 10.1002/anie.200461887 CrossRefGoogle Scholar
  12. Ho HA, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1387. doi: 10.1021/ja037289f CrossRefGoogle Scholar
  13. Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 12:1215–1217. doi: 10.1039/b615383f CrossRefGoogle Scholar
  14. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed 46:6824–6828. doi: 10.1002/anie.200700803 CrossRefGoogle Scholar
  15. Hung YL, Hsiung TM, Chen YY, Huang CC (2010) A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Talanta 82:516–522. doi: 10.1016/j.talanta.2010.05.004 CrossRefGoogle Scholar
  16. Ji XH, Song X, Li J, Bai Y, Yang WS, Peng XG (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948. doi: 10.1021/ja074447k CrossRefGoogle Scholar
  17. Jiang L, Guan J, Zhao L, Li J, Yang WS (2009) pH-dependent aggregation of citrate-capped au nanoparticles induced by Cu2+ ions: the competition effect of hydroxyl groups with the carboxyl groups. Colloids Surf A 346:216–220. doi: 10.1016/j.colsurfa.2009.06.023 CrossRefGoogle Scholar
  18. Kalluri JR, Arbneshi T, Khan SA, Neely A, Candice P, Varisli B, Washington M, McAfee S, Robinson B, Banerjee S, Singh AK, Senapati D, Ray PC (2009) Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. Angew Chem Int Ed 48:9668–9671. doi: 10.1002/anie.200903958 CrossRefGoogle Scholar
  19. Krezel A, Bal W (2004) Studies of zinc(II) and nickel(II) complexes of GSH, GSSG and their analogs shed more light on their biological relevance. Bioinorg Chem Appl 2:293–305. doi: 10.1155/s1565363304000172 CrossRefGoogle Scholar
  20. Krezel A, Szczepanik W, Sokolowska M, Jezowska-Bojczuk M, Bal W (2003) Correlations between complexation modes and redox activities of Ni(II)–GSH complexes. Chem Res Toxicol 16:855–864. doi: 10.1021/tx034012k CrossRefGoogle Scholar
  21. Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096. doi: 10.1002/anie.200700269 CrossRefGoogle Scholar
  22. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-Au nanoparticles hybrids and DNA-based machines. Angew Chem Int Ed 47:3927–3931. doi: 10.1002/anie.200705991 CrossRefGoogle Scholar
  23. Li HB, Cui ZM, Han CP (2009) Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sens Actuators B 143:87–92. doi: 10.1016/j.snb.2009.09.013 CrossRefGoogle Scholar
  24. Lim IS, Mott D, Ip W, Njoki PN, Pan Y, Qin S (2008) Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir 24:8857–8863. doi: 10.1021la800970p CrossRefGoogle Scholar
  25. Liu J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122:10466–10467. doi: 10.1021ja0021316 CrossRefGoogle Scholar
  26. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22): 6642–6643. doi: 10.1021/ja034775u Google Scholar
  27. Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126:12298–12305. doi: 10.1021ja046628h CrossRefGoogle Scholar
  28. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998. doi: 10.1021cr030183i CrossRefGoogle Scholar
  29. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based biobarcodes for the ultrasensitive detection of proteins. Science 301:1884–1886. doi: 10.1126science.1088755 CrossRefGoogle Scholar
  30. Slocik JM, Zabinski JS, Phillips DM, Naik RR (2008) Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 4:548–551. doi: 10.1002smll.200700920 CrossRefGoogle Scholar
  31. Stojanavic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124:9678–9679. doi: 10.1021/ja0259483 CrossRefGoogle Scholar
  32. Sudeep PK, Joseph STS, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516–6517. doi: 10.1021ja051145e CrossRefGoogle Scholar
  33. Swearingen CB, Wernette DP, Cropek DM, Lu Y, Sweelder JV, Bohn PW (2005) Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection. Anal Chem 77:442–448. doi: 10.1021ac0401016 CrossRefGoogle Scholar
  34. Tan ZQ, Liu JF, Liu R, Yin YG, Jiang GB (2009) Visual and colorimetric detection of Hg(2+) by Cloud point extraction with functionalized gold nanoparticles as a probe. Chem Commun 45:7030–7032. doi: 10.1039b915237g CrossRefGoogle Scholar
  35. Xue XJ, Wang F, Liu XG (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244–3245. doi: 10.1021ja076716c CrossRefGoogle Scholar
  36. Zhang J, Li J, Zhang JX, Xie RG, Yang WS (2010) Aqueous synthesis of ZnSe nanocrystals by using glutathione As ligand: the pH-mediated coordination of Zn2+ with glutathione. J Phys Chem C 114:11087–11091. doi: 10.1021jp102540w CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations