Advertisement

Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

  • Viktoriya Sokolova
  • Olga Rotan
  • Jan Klesing
  • Perihan Nalbant
  • Jan Buer
  • Torben Knuschke
  • Astrid M. Westendorf
  • Matthias Epple
Research Paper

Abstract

The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100–250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

Keywords

Calcium phosphate Drug delivery Cells Nanomedicine 

Notes

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (Transregio 60) to A. M. W., J. B. and M. E. We thank Prof. Dr. Eric Metzen and Frank Splettstoesser for help with confocal laser scanning microscopy.

References

  1. Behera T, Swain P (2011) Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell Immunol 271:350–359CrossRefGoogle Scholar
  2. Cai Y, Tang R (2008) Calcium phosphate nanoparticles in biomineralization and biomaterials. J Mater Chem 18:3775–3787CrossRefGoogle Scholar
  3. Cheng X, Kuhn L (2007) Chemotherapy drug delivery from calcium phosphate nanoparticles. Int J Nanomed 2:667–674Google Scholar
  4. Chirila TV, Rakoczy PE, Garrett KL, Lou X, Constable IJ (2002) The use of synthetic polymers for delivery of therapeutic antisense oligodeoxynucleotides. Biomaterials 23:321–342CrossRefGoogle Scholar
  5. Choy JH, Kwak SY, Jeong YJ, Park JS (2000) Inorganic layered double hydroxides as nonviral vectors. Angew Chem Int Ed 39:4042–4045Google Scholar
  6. Epple M, Ganesan K, Heumann R, Klesing J, Kovtun A, Neumann S, Sokolova V (2010) Application of calcium phosphate nanoparticles in biomedicine. J Mater Chem 20:18–23CrossRefGoogle Scholar
  7. Fire AZ (2007) Gene silencing by double-stranded RNA. Angew Chem Int Ed 46:6966–6984CrossRefGoogle Scholar
  8. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279CrossRefGoogle Scholar
  9. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073CrossRefGoogle Scholar
  10. Gilmore IR, Fox SP, Hollins AJ, Akhtar S (2006) Delivery strategies for siRNA-mediated gene silencing. Curr Drug Deliv 3:147–155CrossRefGoogle Scholar
  11. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Schöler HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650CrossRefGoogle Scholar
  12. Kim BYS, Rutka JT, Chan WCW (2010) Nanomedicine. N Engl J Med 363:2434–2443CrossRefGoogle Scholar
  13. Kodama K, Katayama Y, Shoji Y, Nakashima H (2006) The features and shortcomings for gene delivery of current non-viral carriers. Curr Med Chem 13:2155–2161CrossRefGoogle Scholar
  14. Kovtun A, Heumann R, Epple M (2009) Calcium phosphate nanoparticles for the transfection of cells. BioMed Mater Eng 19:241–247Google Scholar
  15. Kurreck J (2009) RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed 48:1378–1398CrossRefGoogle Scholar
  16. Mahl D, Diendorf J, Meyer-Zaika W, Epple M (2011) Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloid Surf A 377:386–392CrossRefGoogle Scholar
  17. Maitra A (2005) Calcium-phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn 5:893–905CrossRefGoogle Scholar
  18. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP (2008) Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29:3477–3496CrossRefGoogle Scholar
  19. Neumann S, Kovtun A, Dietzel ID, Epple M, Heumann R (2009) The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials 30:6794–6802CrossRefGoogle Scholar
  20. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317CrossRefGoogle Scholar
  21. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953CrossRefGoogle Scholar
  22. Pérez-Martínez F, Guerra J, Posadas I, Ceña V (2011) Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res 28:1843–1858CrossRefGoogle Scholar
  23. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195CrossRefGoogle Scholar
  24. Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 47:1382–1395CrossRefGoogle Scholar
  25. Sokolova VV, Radtke I, Heumann R, Epple M (2006) Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials 27:3147–3153CrossRefGoogle Scholar
  26. Sokolova V, Kovtun A, Prymak O, Meyer-Zaika W, Kubareva EA, Romanova EA, Oretskaya TS, Heumann R, Epple M (2007) Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application to gene silencing. J Mater Chem 17:721–727CrossRefGoogle Scholar
  27. Sokolova V, Knuschke T, Kovtun A, Buer J, Epple M, Westendorf AM (2010) The use of calcium phosphate nanoparticles encapsulating toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials 31:5627–5633CrossRefGoogle Scholar
  28. Sokolova V, Knuschke T, Buer J, Westendorf AM, Epple M (2011) Quantitative determination of the composition of multi-shell calcium phosphate–oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater 7:4029–4036CrossRefGoogle Scholar
  29. Uskokovic V, Uskokovic DP (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mat Res 96B:152–191CrossRefGoogle Scholar
  30. Verdine GL, Walensky LD (2007) The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin Cancer Res 13:7264–7270CrossRefGoogle Scholar
  31. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Viktoriya Sokolova
    • 1
  • Olga Rotan
    • 1
  • Jan Klesing
    • 1
  • Perihan Nalbant
    • 2
  • Jan Buer
    • 3
  • Torben Knuschke
    • 3
  • Astrid M. Westendorf
    • 3
  • Matthias Epple
    • 1
  1. 1.Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenEssenGermany
  2. 2.Faculty of Biology, Institute of Molecular Cell BiologyUniversity of Duisburg-EssenEssenGermany
  3. 3.Institute of Medical MicrobiologyUniversity Hospital Essen, University of Duisburg-EssenEssenGermany

Personalised recommendations